Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):m1048. doi: 10.1107/S1600536809030402

Sodium 2-nitro­cinnamate dihydrate: a one-dimensional hydrogen-bonded coordination polymer

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC2969855  PMID: 21577409

Abstract

The title compound catena-poly[aqua­sodium-μ2-aqua-μ3-2-nitro­cinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitro­cinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octa­hedral NaO6 centres, comprising three facially related monodentate carboxyl­ate O-atom donors from separate ligands (all bridging) [Na—O = 2.4370 (13)–2.5046 (13) Å], and three water mol­ecules (two bridging and one monodentate) [Na—O = 2.3782 (13)–2.4404 (17) Å]. The structure is also stabilized by intra-chain water–carboxyl­ate and water–nitro O—H⋯O hydrogen bonds.

Related literature

For literature on similar compounds, see: Crowther et al. (2008); Kariuki et al. (1995); Kula et al. (2007); Schmidt (1964); Smith et al. (2006); Trividi et al. (2005).graphic file with name e-65-m1048-scheme1.jpg

Experimental

Crystal data

  • [Na(C9H6NO4)(H2O)2]

  • M r = 251.17

  • Monoclinic, Inline graphic

  • a = 19.4179 (7) Å

  • b = 3.6899 (2) Å

  • c = 14.8738 (7) Å

  • β = 92.239 (4)°

  • V = 1064.90 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 297 K

  • 0.40 × 0.30 × 0.13 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.93, T max = 0.98

  • 6531 measured reflections

  • 2100 independent reflections

  • 1626 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.113

  • S = 1.09

  • 2100 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030402/su2131sup1.cif

e-65-m1048-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030402/su2131Isup2.hkl

e-65-m1048-Isup2.hkl (101.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O32i 0.78 (3) 2.14 (3) 2.8871 (17) 162 (2)
O1W—H12W⋯O32ii 0.89 (2) 1.90 (2) 2.7852 (17) 171 (2)
O2W—H21W⋯O21iii 0.77 (3) 2.49 (3) 3.050 (2) 131 (3)
O2W—H22W⋯O32i 0.91 (4) 2.04 (5) 2.882 (2) 153 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

supplementary crystallographic information

Comment

Although the structures of two polymorphs of trans-cinnamic acid have been determined (Schmidt, 1964; Smith et al., 2006), the structures of neither trans-2-nitrocinnamic acid [(E)-3-(2-nitrophenyl)propenoic acid] nor any of its alkali metal salts are known, although the dicyclohexylaminium salt has been reported (Trividi et al., 2005). The only structures of alkali metal compounds of analogous ring-substituted trans-cinnamic acids are the sodium complexes with 2-chlorocinnamic acid (Kariuki et al., 1995), 3-chlorocinnamic acid (Crowther et al., 2008), and 4-hydroxy-2-methoxycinnamic acid (Kula et al., 2007). We have now prepared the sodium salt of trans-2-nitrocinnamic acid, a dihydrate [Na(C9H6NO4)(H2O)2]n and its structure is reported here.

The molecular structure of the title compound is illustrated in Fig. 1. The polymeric structure is based on octahadral six-coordinate NaO6 centres comprising three facially related monodentate carboxylate O-donors from separate ligands (all bridging) [Na–O, 2.4370 (13)– 2.5046 (13) Å] and three water molecules (two bridging, one monodentate) [Na–O, 2.3782 (13)–2.4404 (17) Å]. These units are linked into one-dimensional coordination polymer chains which extend along direction [010] (Fig. 1). The structure is similar to that of the sodium 2-chlorocinnamate complex (Kariuki et al., 1995). The polymer chains are stabilized by intra-chain water OH···Ocarboxylate and OH···Onitrohydrogen bonds (Table 1).

In the substituted cinnamate ligand molecule, the nitro group is rotated out of the plane of the benzene ring [torsion angle C1–C2–N21–O22, 144.65 (17)°], while the carboxylate group is similarly non-coplanar [C11–C21–C31–O31, -169.51 (17)°].

Experimental

The title compound was synthesized by heating together for 10 minutes under reflux 1 mmol quantities of trans-cinnamic acid [(E-3-(2-nitrophenyl)propenoic acid] and sodium carbonate in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial rt evaporation of the hot-filtered solution gave thin colourless plate-like crystals, suitable for X-ray analysis.

Refinement

The H-atoms of the water molecules were located in difference electron-density maps and were freely refined: O-H = 0.77 (3) - 0.91 (4) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming scheme for the title compound, showing the one-dimensional chain polymer structure extending along direction [010]. Displacement ellipsoids are drawn at the 50% probability level [Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z].

Crystal data

[Na(C9H6NO4)(H2O)2] F(000) = 520
Mr = 251.17 Dx = 1.567 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2943 reflections
a = 19.4179 (7) Å θ = 3.0–28.7°
b = 3.6899 (2) Å µ = 0.17 mm1
c = 14.8738 (7) Å T = 297 K
β = 92.239 (4)° Plate, colourless
V = 1064.90 (9) Å3 0.40 × 0.30 × 0.13 mm
Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2100 independent reflections
Radiation source: Enhance (Mo) X-ray source 1626 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→21
Tmin = 0.93, Tmax = 0.98 k = −4→4
6531 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0708P)2] where P = (Fo2 + 2Fc2)/3
2100 reflections (Δ/σ)max < 0.001
170 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.05494 (3) 0.73072 (17) −0.06704 (4) 0.0272 (2)
O1W 0.02635 (6) 0.2374 (3) −0.16440 (8) 0.0319 (4)
O2W 0.16105 (8) 0.6812 (5) −0.14886 (12) 0.0691 (7)
O21 0.29871 (7) 0.4625 (6) 0.31366 (9) 0.0637 (6)
O22 0.39979 (7) 0.2280 (5) 0.32066 (10) 0.0541 (6)
O31 0.06940 (6) 0.2430 (3) 0.04255 (8) 0.0282 (4)
O32 0.10417 (6) 0.0743 (4) 0.18086 (8) 0.0336 (4)
N21 0.35246 (7) 0.3769 (4) 0.27927 (10) 0.0339 (5)
C1 0.30837 (8) 0.4562 (5) 0.12070 (11) 0.0267 (5)
C2 0.36252 (8) 0.4742 (4) 0.18535 (11) 0.0261 (5)
C3 0.42813 (9) 0.5880 (5) 0.16617 (12) 0.0327 (6)
C4 0.44154 (10) 0.6987 (5) 0.08063 (14) 0.0384 (6)
C5 0.38972 (10) 0.6860 (5) 0.01494 (13) 0.0368 (6)
C6 0.32514 (9) 0.5634 (5) 0.03431 (12) 0.0346 (6)
C11 0.23935 (9) 0.3141 (5) 0.13955 (12) 0.0297 (5)
C21 0.18383 (9) 0.3638 (5) 0.08772 (13) 0.0345 (6)
C31 0.11421 (8) 0.2155 (4) 0.10637 (11) 0.0256 (5)
H3 0.46290 0.58950 0.21090 0.0390*
H4 0.48520 0.78150 0.06720 0.0460*
H5 0.39850 0.76120 −0.04320 0.0440*
H6 0.29140 0.55150 −0.01180 0.0420*
H11 0.23490 0.17970 0.19190 0.0360*
H11W 0.0460 (11) 0.241 (6) −0.209 (2) 0.055 (8)*
H12W −0.0168 (12) 0.157 (7) −0.1733 (17) 0.044 (8)*
H21 0.18810 0.50100 0.03580 0.0410*
H21W 0.1828 (16) 0.851 (9) −0.138 (2) 0.093 (13)*
H22W 0.1500 (18) 0.666 (12) −0.209 (2) 0.101 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0279 (4) 0.0275 (4) 0.0260 (4) −0.0019 (3) −0.0005 (3) 0.0007 (3)
O1W 0.0363 (7) 0.0350 (7) 0.0244 (7) −0.0082 (5) 0.0026 (5) −0.0002 (5)
O2W 0.0399 (9) 0.1143 (15) 0.0532 (10) −0.0214 (9) 0.0046 (7) 0.0098 (9)
O21 0.0357 (8) 0.1222 (15) 0.0337 (8) 0.0081 (9) 0.0067 (6) −0.0065 (9)
O22 0.0475 (9) 0.0775 (12) 0.0364 (9) 0.0164 (7) −0.0096 (7) 0.0112 (7)
O31 0.0220 (6) 0.0370 (7) 0.0253 (6) −0.0013 (5) −0.0039 (5) 0.0011 (5)
O32 0.0290 (7) 0.0461 (8) 0.0255 (7) 0.0007 (5) 0.0005 (5) 0.0056 (6)
N21 0.0266 (8) 0.0471 (9) 0.0276 (8) −0.0020 (7) −0.0027 (6) −0.0022 (7)
C1 0.0235 (8) 0.0281 (9) 0.0283 (9) 0.0035 (7) 0.0004 (7) −0.0017 (7)
C2 0.0264 (8) 0.0257 (8) 0.0260 (9) 0.0040 (7) 0.0003 (7) −0.0020 (7)
C3 0.0255 (9) 0.0331 (10) 0.0393 (11) −0.0010 (8) −0.0021 (7) −0.0033 (8)
C4 0.0299 (10) 0.0362 (10) 0.0499 (13) −0.0071 (8) 0.0106 (9) −0.0017 (9)
C5 0.0405 (11) 0.0374 (10) 0.0331 (11) −0.0045 (8) 0.0097 (8) 0.0035 (8)
C6 0.0340 (10) 0.0415 (11) 0.0281 (9) 0.0024 (8) −0.0026 (7) 0.0020 (8)
C11 0.0261 (9) 0.0353 (10) 0.0276 (9) −0.0015 (7) 0.0001 (7) −0.0008 (7)
C21 0.0266 (9) 0.0435 (11) 0.0334 (10) −0.0035 (8) −0.0004 (7) 0.0093 (8)
C31 0.0231 (8) 0.0288 (9) 0.0248 (9) 0.0039 (7) 0.0008 (7) −0.0028 (7)

Geometric parameters (Å, °)

Na1—O1W 2.3782 (13) C1—C2 1.399 (2)
Na1—O2W 2.4404 (17) C1—C6 1.395 (2)
Na1—O31 2.4370 (13) C1—C11 1.476 (2)
Na1—O1Wi 2.4162 (13) C2—C3 1.382 (2)
Na1—O31i 2.5046 (13) C3—C4 1.371 (3)
Na1—O31ii 2.4577 (13) C4—C5 1.376 (3)
O21—N21 1.222 (2) C5—C6 1.374 (3)
O22—N21 1.217 (2) C11—C21 1.314 (3)
O31—C31 1.267 (2) C21—C31 1.494 (2)
O32—C31 1.247 (2) C3—H3 0.9300
O1W—H11W 0.78 (3) C4—H4 0.9300
O1W—H12W 0.89 (2) C5—H5 0.9300
O2W—H21W 0.77 (3) C6—H6 0.9300
O2W—H22W 0.91 (4) C11—H11 0.9300
N21—C2 1.463 (2) C21—H21 0.9300
O1W—Na1—O2W 79.67 (5) C2—C1—C6 115.06 (15)
O1W—Na1—O31 81.96 (4) C2—C1—C11 123.37 (15)
O1W—Na1—O1Wi 100.64 (4) C6—C1—C11 121.46 (15)
O1W—Na1—O31i 172.53 (5) N21—C2—C1 121.34 (14)
O1W—Na1—O31ii 85.02 (4) N21—C2—C3 115.49 (14)
O2W—Na1—O31 101.58 (6) C1—C2—C3 123.16 (15)
O1Wi—Na1—O2W 86.43 (5) C2—C3—C4 119.49 (17)
O2W—Na1—O31i 107.80 (5) C3—C4—C5 119.26 (18)
O2W—Na1—O31ii 158.48 (6) C4—C5—C6 120.69 (18)
O1Wi—Na1—O31 171.93 (5) C1—C6—C5 122.29 (16)
O31—Na1—O31i 96.60 (4) C1—C11—C21 124.71 (17)
O31—Na1—O31ii 91.04 (4) C11—C21—C31 124.59 (17)
O1Wi—Na1—O31i 79.83 (4) O31—C31—C21 115.57 (14)
O1Wi—Na1—O31ii 81.62 (4) O32—C31—C21 119.48 (15)
O31i—Na1—O31ii 87.68 (4) O31—C31—O32 124.96 (15)
Na1—O1W—Na1iii 100.64 (5) C2—C3—H3 120.00
Na1—O31—C31 128.20 (10) C4—C3—H3 120.00
Na1—O31—Na1iii 96.60 (5) C3—C4—H4 120.00
Na1—O31—Na1ii 88.96 (4) C5—C4—H4 120.00
Na1iii—O31—C31 118.92 (10) C4—C5—H5 120.00
Na1ii—O31—C31 122.84 (10) C6—C5—H5 120.00
Na1iii—O31—Na1ii 92.32 (4) C1—C6—H6 119.00
H11W—O1W—H12W 112 (2) C5—C6—H6 119.00
H21W—O2W—H22W 111 (4) C1—C11—H11 118.00
O21—N21—C2 118.98 (14) C21—C11—H11 118.00
O22—N21—C2 117.87 (14) C11—C21—H21 118.00
O21—N21—O22 123.06 (16) C31—C21—H21 118.00
O2W—Na1—O1W—Na1iii 95.66 (6) O31—Na1—O31ii—C31ii −136.41 (11)
O31—Na1—O1W—Na1iii −7.75 (5) Na1—O31—C31—O32 145.52 (13)
O1Wi—Na1—O1W—Na1iii 180.00 (6) Na1—O31—C31—C21 −35.11 (19)
O31ii—Na1—O1W—Na1iii −99.51 (5) Na1iii—O31—C31—O32 −87.48 (18)
O1W—Na1—O31—C31 142.67 (13) Na1iii—O31—C31—C21 91.89 (14)
O1W—Na1—O31—Na1iii 7.39 (4) Na1ii—O31—C31—O32 26.8 (2)
O1W—Na1—O31—Na1ii −84.82 (4) Na1ii—O31—C31—C21 −153.81 (11)
O2W—Na1—O31—C31 65.02 (14) O21—N21—C2—C1 −38.6 (2)
O2W—Na1—O31—Na1iii −70.26 (6) O21—N21—C2—C3 140.47 (18)
O2W—Na1—O31—Na1ii −162.47 (5) O22—N21—C2—C1 144.65 (17)
O31i—Na1—O31—C31 −44.72 (13) O22—N21—C2—C3 −36.2 (2)
O31i—Na1—O31—Na1iii 180.00 (4) C6—C1—C2—N21 178.85 (15)
O31i—Na1—O31—Na1ii 87.79 (4) C6—C1—C2—C3 −0.2 (3)
O31ii—Na1—O31—C31 −132.51 (13) C11—C1—C2—N21 −4.8 (3)
O31ii—Na1—O31—Na1iii 92.21 (5) C11—C1—C2—C3 176.18 (17)
O31ii—Na1—O31—Na1ii 0.00 (3) C2—C1—C6—C5 −1.5 (3)
O1W—Na1—O1Wi—Na1i −180.00 (6) C11—C1—C6—C5 −177.99 (17)
O2W—Na1—O1Wi—Na1i −101.22 (6) C2—C1—C11—C21 164.51 (18)
O2W—Na1—O31i—Na1i 75.56 (6) C6—C1—C11—C21 −19.4 (3)
O2W—Na1—O31i—C31i −65.26 (12) N21—C2—C3—C4 −177.36 (16)
O31—Na1—O31i—Na1i 180.00 (3) C1—C2—C3—C4 1.7 (3)
O31—Na1—O31i—C31i 39.19 (12) C2—C3—C4—C5 −1.6 (3)
O1W—Na1—O31ii—Na1ii 81.83 (4) C3—C4—C5—C6 −0.1 (3)
O1W—Na1—O31ii—C31ii −54.58 (11) C4—C5—C6—C1 1.7 (3)
O2W—Na1—O31ii—Na1ii 126.42 (15) C1—C11—C21—C31 179.16 (16)
O2W—Na1—O31ii—C31ii −10.0 (2) C11—C21—C31—O31 −169.51 (17)
O31—Na1—O31ii—Na1ii 0.00 (5) C11—C21—C31—O32 9.9 (3)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H11W···O32iv 0.78 (3) 2.14 (3) 2.8871 (17) 162 (2)
O1W—H12W···O32v 0.89 (2) 1.90 (2) 2.7852 (17) 171 (2)
O2W—H21W···O21vi 0.77 (3) 2.49 (3) 3.050 (2) 131 (3)
O2W—H22W···O32iv 0.91 (4) 2.04 (5) 2.882 (2) 153 (4)
C11—H11···O21 0.93 2.39 2.846 (2) 110

Symmetry codes: (iv) x, −y+1/2, z−1/2; (v) −x, −y, −z; (vi) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2131).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct.872, 64–71.
  3. Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051–1053.
  4. Kula, A., Mazur, L. & Rzaczynska, Z. (2007). J. Coord. Chem.60, 843–850.
  5. Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  6. Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021.
  7. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024–o2026.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Trividi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem.15, 2606–2614.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030402/su2131sup1.cif

e-65-m1048-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030402/su2131Isup2.hkl

e-65-m1048-Isup2.hkl (101.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES