Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 26;65(Pt 9):o2233. doi: 10.1107/S1600536809033005

4,4′-(Propane-1,3-di­yl)dibenzoic acid

Jia Hua a,*, Lu Gao a
PMCID: PMC2969863  PMID: 21577632

Abstract

The complete molecule of the title compound, C17H16O4, is generated by crystallographic twofold symmetry, with the central C atom lying on the rotation axis and a dihedral angle between the benzene rings of 81.9 (2)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonding between carboxyl groups, forming one-dimensional supra­molecular chains.

Related literature

For general background, see: Bradshaw et al. (2005); Eddaoudi et al. (2001); Heo et al. (2007); Kesanli & Lin (2003). For related structures, see: Dai et al. (2005); Li et al. (2007); Ma et al. (2006). For the synthesis, see: Cram & Steinberg (1951).graphic file with name e-65-o2233-scheme1.jpg

Experimental

Crystal data

  • C17H16O4

  • M r = 284.30

  • Monoclinic, Inline graphic

  • a = 14.569 (3) Å

  • b = 4.7337 (6) Å

  • c = 21.463 (3) Å

  • β = 102.722 (10)°

  • V = 1443.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.48 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.947, T max = 0.989

  • 3830 measured reflections

  • 1276 independent reflections

  • 688 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.115

  • S = 0.94

  • 1276 reflections

  • 96 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033005/xu2559sup1.cif

e-65-o2233-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033005/xu2559Isup2.hkl

e-65-o2233-Isup2.hkl (63.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.84 2.642 (2) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the National Natural Science Foundation of China.

supplementary crystallographic information

Comment

In the past decades the design and synthesis of metal-organic frameworks have received extensive attention in the field of supra-molecular chemistry and crystal engineering (Bradshaw et al., 2005; Eddaoudi et al., 2001; Heo et al., 2007; Kesanli et al., 2003). As part of our investigation on the metal-organic frameworks (Dai et al., 2005; Li et al., 2007; Ma et al., 2006), we report here the crystal structure of the title compound.

In the crystal structure, the title molecule has site symmetry 2, the C1 atom is located on a twofold rotation axis. The two symmetry-related benzene rings are twisted with respect to each other with a dihedral angle of 81.9 (2)° (Fig. 1). The carboxylic acid groups of neighboring molecules form strong intermolecular O—H···O hydrogen bonds (Table 1), linking the molecules into the one-dimensional supra-molecular chains (Fig. 2).

Experimental

4,4'-(Propane-1,3-diyl)dibenzoic acid was synthesized according to literature methods (Cram & Steinberg, 1951), and other reagents were commercially obtained without further purification. In a typical synthesis procedure for the title compound, the reactants Zn(NO3)2.6H2O (0.149 g, 0.5 mmol), 4,4'-(propane-1,3-diyl)dibenzoic acid (0.142 g, 0.5 mmol), HCl (38%, 0.30 ml) and triethylamine (0.35 ml) were mixed in water (5 ml). The mixture was placed in a 15 ml Teflon-lined stainless steel autoclave with a filling capacity of 37.7% and heated under autogenous pressure for 5 d at 453 K. After slow cooling to room temperature, the block-shaped colourless crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.97 (methylene) and O—H = 0.82 Å, and allowed to ride on their parent atoms with Uiso(H) = 0.08 Å2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at 50% probability level [symmetry code: (i) 1 - x, y, -z + 3/2].

Fig. 2.

Fig. 2.

A diagram showing the one-dimensional supra-molecular chain formed by intermolecular O—H···O hydrogen bonding (dashed lines).

Crystal data

C17H16O4 F(000) = 600
Mr = 284.30 Dx = 1.308 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 750 reflections
a = 14.569 (3) Å θ = 2.9–24.2°
b = 4.7337 (6) Å µ = 0.09 mm1
c = 21.463 (3) Å T = 298 K
β = 102.722 (10)° Block, colourless
V = 1443.8 (4) Å3 0.48 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1276 independent reflections
Radiation source: fine-focus sealed tube 688 reflections with I > 2σ(I)
graphite Rint = 0.059
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→17
Tmin = 0.947, Tmax = 0.989 k = −5→5
3830 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0552P)2] where P = (Fo2 + 2Fc2)/3
1276 reflections (Δ/σ)max < 0.001
96 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.78668 (11) −0.0453 (3) 0.56693 (7) 0.0686 (5)
O2 0.64734 (11) −0.0622 (4) 0.49904 (8) 0.0698 (5)
H2 0.6756 −0.1758 0.4813 0.080*
C1 0.5000 0.6425 (6) 0.7500 0.0519 (9)
H1A 0.5479 0.5215 0.7752 0.080* 0.50
H1B 0.4521 0.5215 0.7248 0.080* 0.50
C2 0.54479 (15) 0.8179 (4) 0.70454 (9) 0.0514 (6)
H2A 0.4973 0.9372 0.6784 0.080*
H2B 0.5931 0.9392 0.7291 0.080*
C3 0.58765 (16) 0.6279 (4) 0.66203 (10) 0.0443 (6)
C4 0.53260 (16) 0.5110 (5) 0.60728 (11) 0.0543 (6)
H4 0.4695 0.5617 0.5951 0.080*
C5 0.56894 (16) 0.3211 (5) 0.57026 (10) 0.0522 (6)
H5 0.5303 0.2454 0.5338 0.080*
C6 0.66296 (15) 0.2426 (4) 0.58731 (10) 0.0426 (5)
C7 0.71907 (16) 0.3612 (5) 0.64125 (11) 0.0543 (6)
H7 0.7824 0.3129 0.6530 0.080*
C8 0.68157 (17) 0.5525 (5) 0.67812 (10) 0.0552 (6)
H8 0.7203 0.6309 0.7142 0.080*
C9 0.70274 (16) 0.0329 (4) 0.54925 (10) 0.0465 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0486 (10) 0.0791 (12) 0.0795 (12) 0.0089 (9) 0.0173 (9) −0.0169 (10)
O2 0.0677 (11) 0.0776 (12) 0.0656 (11) 0.0136 (10) 0.0178 (10) −0.0211 (10)
C1 0.067 (2) 0.0450 (18) 0.0520 (19) 0.000 0.0308 (18) 0.000
C2 0.0647 (15) 0.0428 (12) 0.0544 (14) 0.0017 (11) 0.0301 (13) 0.0015 (11)
C3 0.0562 (14) 0.0385 (12) 0.0441 (13) 0.0000 (11) 0.0239 (12) 0.0053 (11)
C4 0.0504 (14) 0.0615 (15) 0.0524 (14) 0.0090 (12) 0.0144 (13) −0.0025 (12)
C5 0.0536 (14) 0.0584 (15) 0.0448 (13) 0.0060 (12) 0.0113 (12) −0.0049 (11)
C6 0.0476 (13) 0.0419 (12) 0.0419 (13) 0.0000 (11) 0.0178 (11) 0.0033 (10)
C7 0.0469 (13) 0.0603 (15) 0.0574 (14) 0.0035 (12) 0.0148 (12) −0.0039 (13)
C8 0.0561 (15) 0.0594 (14) 0.0505 (14) 0.0008 (13) 0.0125 (13) −0.0079 (12)
C9 0.0511 (15) 0.0471 (14) 0.0438 (14) −0.0032 (12) 0.0158 (13) 0.0003 (11)

Geometric parameters (Å, °)

O1—C9 1.254 (2) C3—C4 1.384 (3)
O2—C9 1.278 (2) C4—C5 1.380 (3)
O2—H2 0.8200 C4—H4 0.9300
C1—C2 1.532 (2) C5—C6 1.388 (3)
C1—C2i 1.532 (2) C5—H5 0.9300
C1—H1A 0.9700 C6—C7 1.381 (3)
C1—H1B 0.9700 C6—C9 1.482 (3)
C2—C3 1.511 (3) C7—C8 1.391 (3)
C2—H2A 0.9700 C7—H7 0.9300
C2—H2B 0.9700 C8—H8 0.9300
C3—C8 1.382 (3)
C9—O2—H2 109.5 C5—C4—H4 119.2
C2—C1—C2i 114.4 (2) C3—C4—H4 119.2
C2—C1—H1A 108.7 C4—C5—C6 120.3 (2)
C2i—C1—H1A 108.7 C4—C5—H5 119.9
C2—C1—H1B 108.7 C6—C5—H5 119.9
C2i—C1—H1B 108.7 C7—C6—C5 118.7 (2)
H1A—C1—H1B 107.6 C7—C6—C9 120.2 (2)
C3—C2—C1 110.64 (17) C5—C6—C9 121.1 (2)
C3—C2—H2A 109.5 C6—C7—C8 120.5 (2)
C1—C2—H2A 109.5 C6—C7—H7 119.8
C3—C2—H2B 109.5 C8—C7—H7 119.8
C1—C2—H2B 109.5 C3—C8—C7 121.1 (2)
H2A—C2—H2B 108.1 C3—C8—H8 119.4
C8—C3—C4 117.7 (2) C7—C8—H8 119.4
C8—C3—C2 121.4 (2) O1—C9—O2 122.9 (2)
C4—C3—C2 120.8 (2) O1—C9—C6 120.3 (2)
C5—C4—C3 121.7 (2) O2—C9—C6 116.7 (2)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1ii 0.82 1.84 2.642 (2) 167.6

Symmetry codes: (ii) −x+3/2, −y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2559).

References

  1. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res.38, 273–282. [DOI] [PubMed]
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cram, D. J. & Steinberg, H. (1951). J. Am. Chem. Soc.73, 5691–5704.
  5. Dai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410–o3411.
  6. Eddaoudi, M., Moler, D. B., Li, H.-L., Chen, B.-L., Reineke, T. N., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Heo, J., Jeon, Y. M. & Mirkin, C. A. (2007). J. Am. Chem. Soc.129, 7712–7713. [DOI] [PubMed]
  10. Kesanli, B. & Lin, W.-B. (2003). Coord. Chem. Rev.246, 305–326.
  11. Li, W., Shao, M., Liu, H.-J. & Li, M.-X. (2007). Acta Cryst. E63, o3224.
  12. Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.
  13. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033005/xu2559sup1.cif

e-65-o2233-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033005/xu2559Isup2.hkl

e-65-o2233-Isup2.hkl (63.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES