Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):o2143. doi: 10.1107/S1600536809031481

2-[(E)-2-(4-Methyl­benzene­sulfonamido)ethyl­iminiometh­yl]-4-nitro­phenolate

Marife Tüfekçi a, Gökhan Alpaslan a,*, Mustafa Macit b, Ahmet Erdönmez a
PMCID: PMC2969864  PMID: 21577552

Abstract

The mol­ecule of the title compound, C16H17N3O5S, crystallizes in a zwitterionic form, with a strong intra­molecular N—H⋯O hydrogen bond. The dihedral angle between the two benzene rings is 7.06 (9)°. In the crystal, mol­ecules are linked into chains along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Calligaris et al. (1972); Cohen et al. (1964); Hadjoudis et al. (1987); Karabıyık et al. (2008). For the crystal structure of 2-[2-(1H-indol-3-yl)ethyl­iminiometh­yl]-4-nitro­phenolate, see: Ali et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-o2143-scheme1.jpg

Experimental

Crystal data

  • C16H17N3O5S

  • M r = 363.39

  • Monoclinic, Inline graphic

  • a = 17.915 (5) Å

  • b = 7.342 (5) Å

  • c = 13.055 (5) Å

  • β = 103.928 (5)°

  • V = 1666.7 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.68 × 0.50 × 0.26 mm

Data collection

  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.887, T max = 0.956

  • 22908 measured reflections

  • 3272 independent reflections

  • 2845 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.094

  • S = 1.07

  • 3272 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031481/ci2882sup1.cif

e-65-o2143-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031481/ci2882Isup2.hkl

e-65-o2143-Isup2.hkl (157.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O3i 0.78 (2) 2.06 (2) 2.833 (2) 170 (2)
N2—H1A⋯O3 0.87 (2) 1.94 (2) 2.648 (2) 137 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). These properties result from a proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Schiff bases exhibit two well known tautomeric forms viz. OH and NH tautomers, and they also exist in zwitterionic form (Karabıyık et al., 2008). Our investigations show that the title compund has a zwitterionic form with a strong intramolecular N—H···O hydrogen bond (Fig. 1).

The C7N2 [1.292 (2) Å] and C6—03 [1.272 (2) Å] bond distances in the title compound are comparable to those [1.292 (2) and 1.264 (2) Å] observed in a related zwitterionic structure (Ali et al., 2008). The molecule adopts a folded conformation. The dihedral angle between the two benzene rings is 7.06 (9)°.

The intramolecular N2—H1A···O3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The molecules are linked into chains (Fig. 2) along the c axis by intermolecular N—H···O hydrogen bonds (Table 1).

Experimental

2-Hydroxy-5-nitrobenzaldehyde (10 mg, 5.98× 10-2 mmol) in ethanol (20 ml) was added to a solution of N-p-tolyl-sulfonylethylenediamine (12.7 mg, 5.98× 10-2 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Single crystals of the title compound were obtained by slow evaporation of an ethylacetate solution (yield 55%; m.p. 446–447 K).

Refinement

Atoms H1 and H1A were located in a difference map and were refined freely. The remaining H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

A packing diagram for (I). H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C16H17N3O5S F(000) = 760
Mr = 363.39 Dx = 1.448 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 37649 reflections
a = 17.915 (5) Å θ = 1.6–28.0°
b = 7.342 (5) Å µ = 0.23 mm1
c = 13.055 (5) Å T = 296 K
β = 103.928 (5)° Block, yellow
V = 1666.7 (14) Å3 0.68 × 0.50 × 0.26 mm
Z = 4

Data collection

Stoe IPDS-II diffractometer 3272 independent reflections
Radiation source: fine-focus sealed tube 2845 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 2.3°
ω scans h = −22→22
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −9→9
Tmin = 0.887, Tmax = 0.956 l = −16→15
22908 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2378P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.004
3272 reflections Δρmax = 0.26 e Å3
236 parameters Δρmin = −0.27 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0025 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.73857 (9) 0.1439 (2) 0.58535 (12) 0.0464 (3)
C2 0.81399 (10) 0.1345 (2) 0.64584 (14) 0.0559 (4)
H2 0.8238 0.1405 0.7190 0.067*
C3 0.87338 (10) 0.1163 (3) 0.59823 (15) 0.0604 (4)
C4 0.86008 (11) 0.1075 (3) 0.48830 (16) 0.0648 (5)
H4 0.9012 0.0958 0.4567 0.078*
C5 0.78743 (11) 0.1160 (3) 0.42812 (15) 0.0642 (5)
H5 0.7796 0.1093 0.3552 0.077*
C6 0.72214 (10) 0.1346 (2) 0.47198 (13) 0.0523 (4)
C7 0.67882 (9) 0.1617 (2) 0.63841 (13) 0.0463 (3)
H7 0.6925 0.1648 0.7118 0.056*
C8 0.54749 (9) 0.1973 (2) 0.65034 (13) 0.0466 (4)
H8A 0.5661 0.1505 0.7214 0.056*
H8B 0.5024 0.1275 0.6162 0.056*
C9 0.52559 (8) 0.3947 (2) 0.65549 (12) 0.0438 (3)
H9A 0.5085 0.4419 0.5843 0.053*
H9B 0.4829 0.4035 0.6889 0.053*
C10 0.69671 (8) 0.65737 (19) 0.62312 (11) 0.0400 (3)
C11 0.69016 (9) 0.6244 (2) 0.51721 (12) 0.0495 (4)
H11 0.6420 0.6182 0.4705 0.059*
C12 0.75608 (10) 0.6008 (3) 0.48147 (13) 0.0571 (4)
H12 0.7515 0.5781 0.4102 0.068*
C13 0.82838 (10) 0.6100 (2) 0.54833 (15) 0.0553 (4)
C14 0.83365 (10) 0.6421 (3) 0.65479 (15) 0.0601 (4)
H14 0.8818 0.6474 0.7015 0.072*
C15 0.76879 (9) 0.6661 (2) 0.69225 (13) 0.0522 (4)
H15 0.7733 0.6882 0.7636 0.063*
C16 0.89969 (12) 0.5917 (3) 0.50703 (19) 0.0795 (6)
H16A 0.8863 0.5403 0.4374 0.119*
H16B 0.9359 0.5136 0.5529 0.119*
H16C 0.9223 0.7097 0.5045 0.119*
N1 0.95110 (10) 0.1062 (3) 0.66326 (18) 0.0917 (6)
N2 0.60663 (7) 0.17413 (18) 0.59235 (11) 0.0456 (3)
N3 0.58876 (7) 0.50612 (18) 0.71366 (10) 0.0448 (3)
O1 0.96069 (10) 0.1084 (5) 0.75840 (16) 0.1571 (12)
O2 1.00420 (9) 0.0954 (4) 0.62016 (16) 0.1183 (7)
O3 0.65360 (7) 0.1427 (2) 0.41569 (9) 0.0669 (4)
O4 0.55334 (6) 0.75149 (15) 0.58460 (9) 0.0479 (3)
O5 0.63776 (6) 0.81294 (15) 0.76080 (9) 0.0522 (3)
S1 0.614192 (19) 0.69488 (5) 0.67146 (3) 0.03887 (13)
H1 0.6088 (10) 0.478 (2) 0.7710 (14) 0.048 (5)*
H1A 0.5970 (12) 0.176 (3) 0.5235 (17) 0.067 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0470 (8) 0.0456 (8) 0.0471 (8) −0.0002 (6) 0.0121 (7) −0.0028 (7)
C2 0.0522 (9) 0.0660 (10) 0.0494 (9) −0.0005 (8) 0.0124 (7) 0.0003 (8)
C3 0.0452 (9) 0.0709 (11) 0.0658 (11) 0.0025 (8) 0.0148 (8) 0.0017 (9)
C4 0.0601 (11) 0.0720 (12) 0.0701 (12) 0.0056 (9) 0.0307 (9) −0.0012 (10)
C5 0.0709 (12) 0.0753 (12) 0.0507 (9) 0.0086 (10) 0.0232 (9) −0.0062 (9)
C6 0.0568 (10) 0.0516 (9) 0.0487 (9) 0.0038 (7) 0.0130 (7) −0.0072 (7)
C7 0.0505 (9) 0.0449 (8) 0.0432 (8) −0.0021 (6) 0.0107 (7) −0.0007 (6)
C8 0.0438 (8) 0.0475 (8) 0.0502 (9) −0.0058 (6) 0.0147 (7) 0.0030 (7)
C9 0.0348 (7) 0.0498 (8) 0.0472 (8) −0.0037 (6) 0.0109 (6) 0.0008 (7)
C10 0.0389 (7) 0.0409 (7) 0.0399 (7) −0.0016 (6) 0.0089 (6) 0.0033 (6)
C11 0.0425 (8) 0.0643 (10) 0.0407 (8) −0.0008 (7) 0.0079 (6) 0.0049 (7)
C12 0.0556 (10) 0.0750 (12) 0.0440 (9) 0.0037 (8) 0.0185 (7) 0.0086 (8)
C13 0.0469 (9) 0.0583 (10) 0.0651 (11) 0.0003 (7) 0.0222 (8) 0.0094 (8)
C14 0.0378 (8) 0.0749 (12) 0.0637 (11) −0.0013 (8) 0.0044 (7) 0.0005 (9)
C15 0.0444 (8) 0.0643 (10) 0.0450 (8) 0.0001 (7) 0.0054 (7) −0.0027 (7)
C16 0.0553 (11) 0.0987 (16) 0.0943 (15) 0.0034 (11) 0.0372 (11) 0.0117 (13)
N1 0.0490 (9) 0.1412 (19) 0.0847 (13) 0.0029 (11) 0.0154 (9) 0.0064 (13)
N2 0.0471 (7) 0.0463 (7) 0.0444 (7) −0.0015 (5) 0.0131 (6) −0.0026 (6)
N3 0.0466 (7) 0.0521 (8) 0.0328 (7) −0.0071 (6) 0.0041 (5) 0.0045 (6)
O1 0.0575 (10) 0.327 (4) 0.0791 (12) 0.0105 (15) 0.0021 (9) 0.0096 (18)
O2 0.0494 (8) 0.195 (2) 0.1165 (14) 0.0089 (11) 0.0310 (9) −0.0005 (14)
O3 0.0600 (8) 0.0888 (9) 0.0472 (7) 0.0093 (7) 0.0038 (6) −0.0159 (6)
O4 0.0417 (5) 0.0488 (6) 0.0494 (6) 0.0043 (4) 0.0034 (5) 0.0055 (5)
O5 0.0512 (6) 0.0543 (6) 0.0504 (6) −0.0036 (5) 0.0108 (5) −0.0159 (5)
S1 0.03696 (19) 0.0403 (2) 0.0382 (2) 0.00009 (14) 0.00693 (14) −0.00238 (14)

Geometric parameters (Å, °)

C1—C2 1.393 (2) C10—C15 1.387 (2)
C1—C7 1.414 (2) C10—S1 1.7631 (15)
C1—C6 1.440 (2) C11—C12 1.381 (2)
C2—C3 1.362 (2) C11—H11 0.93
C2—H2 0.93 C12—C13 1.378 (3)
C3—C4 1.399 (3) C12—H12 0.93
C3—N1 1.448 (3) C13—C14 1.390 (3)
C4—C5 1.350 (3) C13—C16 1.507 (2)
C4—H4 0.93 C14—C15 1.376 (2)
C5—C6 1.427 (2) C14—H14 0.93
C5—H5 0.93 C15—H15 0.93
C6—O3 1.272 (2) C16—H16A 0.96
C7—N2 1.292 (2) C16—H16B 0.96
C7—H7 0.93 C16—H16C 0.96
C8—N2 1.4529 (19) N1—O1 1.212 (3)
C8—C9 1.507 (2) N1—O2 1.219 (2)
C8—H8A 0.97 N2—H1A 0.87 (2)
C8—H8B 0.97 N3—S1 1.5976 (16)
C9—N3 1.4537 (19) N3—H1 0.777 (18)
C9—H9A 0.97 O4—S1 1.4325 (11)
C9—H9B 0.97 O5—S1 1.4329 (12)
C10—C11 1.381 (2)
C2—C1—C7 118.18 (15) C10—C11—C12 119.13 (15)
C2—C1—C6 120.72 (15) C10—C11—H11 120.4
C7—C1—C6 121.10 (15) C12—C11—H11 120.4
C3—C2—C1 120.26 (16) C13—C12—C11 121.97 (16)
C3—C2—H2 119.9 C13—C12—H12 119.0
C1—C2—H2 119.9 C11—C12—H12 119.0
C2—C3—C4 120.93 (17) C12—C13—C14 117.95 (15)
C2—C3—N1 118.96 (18) C12—C13—C16 121.15 (18)
C4—C3—N1 120.11 (17) C14—C13—C16 120.87 (17)
C5—C4—C3 119.81 (16) C15—C14—C13 121.12 (16)
C5—C4—H4 120.1 C15—C14—H14 119.4
C3—C4—H4 120.1 C13—C14—H14 119.4
C4—C5—C6 122.64 (17) C14—C15—C10 119.75 (16)
C4—C5—H5 118.7 C14—C15—H15 120.1
C6—C5—H5 118.7 C10—C15—H15 120.1
O3—C6—C5 122.91 (16) C13—C16—H16A 109.5
O3—C6—C1 121.46 (15) C13—C16—H16B 109.5
C5—C6—C1 115.63 (16) H16A—C16—H16B 109.5
N2—C7—C1 124.73 (15) C13—C16—H16C 109.5
N2—C7—H7 117.6 H16A—C16—H16C 109.5
C1—C7—H7 117.6 H16B—C16—H16C 109.5
N2—C8—C9 111.47 (12) O1—N1—O2 122.7 (2)
N2—C8—H8A 109.3 O1—N1—C3 118.65 (18)
C9—C8—H8A 109.3 O2—N1—C3 118.7 (2)
N2—C8—H8B 109.3 C7—N2—C8 122.67 (14)
C9—C8—H8B 109.3 C7—N2—H1A 114.1 (14)
H8A—C8—H8B 108.0 C8—N2—H1A 123.0 (14)
N3—C9—C8 112.72 (13) C9—N3—S1 123.98 (11)
N3—C9—H9A 109.0 C9—N3—H1 118.3 (13)
C8—C9—H9A 109.0 S1—N3—H1 117.4 (13)
N3—C9—H9B 109.0 O4—S1—O5 119.20 (8)
C8—C9—H9B 109.0 O4—S1—N3 107.39 (7)
H9A—C9—H9B 107.8 O5—S1—N3 107.26 (8)
C11—C10—C15 120.07 (14) O4—S1—C10 107.82 (7)
C11—C10—S1 120.62 (11) O5—S1—C10 106.12 (7)
C15—C10—S1 119.29 (12) N3—S1—C10 108.74 (7)
C7—C1—C2—C3 179.67 (16) C12—C13—C14—C15 −0.7 (3)
C6—C1—C2—C3 0.0 (3) C16—C13—C14—C15 177.35 (18)
C1—C2—C3—C4 0.2 (3) C13—C14—C15—C10 0.3 (3)
C1—C2—C3—N1 −179.76 (18) C11—C10—C15—C14 0.1 (3)
C2—C3—C4—C5 −0.4 (3) S1—C10—C15—C14 −178.20 (13)
N1—C3—C4—C5 179.6 (2) C2—C3—N1—O1 2.3 (4)
C3—C4—C5—C6 0.3 (3) C4—C3—N1—O1 −177.7 (3)
C4—C5—C6—O3 180.00 (19) C2—C3—N1—O2 −177.8 (2)
C4—C5—C6—C1 0.0 (3) C4—C3—N1—O2 2.2 (4)
C2—C1—C6—O3 179.83 (16) C1—C7—N2—C8 −178.27 (14)
C7—C1—C6—O3 0.2 (3) C9—C8—N2—C7 96.71 (17)
C2—C1—C6—C5 −0.1 (2) C8—C9—N3—S1 131.22 (13)
C7—C1—C6—C5 −179.75 (16) C9—N3—S1—O4 14.65 (14)
C2—C1—C7—N2 179.17 (15) C9—N3—S1—O5 143.88 (12)
C6—C1—C7—N2 −1.2 (3) C9—N3—S1—C10 −101.76 (13)
N2—C8—C9—N3 −63.94 (17) C11—C10—S1—O4 −21.41 (15)
C15—C10—C11—C12 −0.1 (2) C15—C10—S1—O4 156.87 (13)
S1—C10—C11—C12 178.14 (13) C11—C10—S1—O5 −150.18 (13)
C10—C11—C12—C13 −0.3 (3) C15—C10—S1—O5 28.09 (15)
C11—C12—C13—C14 0.7 (3) C11—C10—S1—N3 94.72 (14)
C11—C12—C13—C16 −177.38 (18) C15—C10—S1—N3 −87.00 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1···O3i 0.78 (2) 2.06 (2) 2.833 (2) 170 (2)
N2—H1A···O3 0.87 (2) 1.94 (2) 2.648 (2) 137 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2882).

References

  1. Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o913. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev.7, 385–403.
  4. Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  8. Karabıyık, H., Ocak İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct 873, 130–136.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031481/ci2882sup1.cif

e-65-o2143-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031481/ci2882Isup2.hkl

e-65-o2143-Isup2.hkl (157.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES