Abstract
In the crystal structure of the title compound, C6H4ClN3O5, the two nitro groups are twisted with respect to the pyridine ring, making dihedral angles of 33.12 (13) and 63.66 (14)°.
Related literature
For the synthesis, see: Bissell & Swansiger (1987 ▶); Chen et al. (2008 ▶).
Experimental
Crystal data
C6H4ClN3O5
M r = 233.57
Monoclinic,
a = 6.6490 (13) Å
b = 10.842 (2) Å
c = 12.715 (3) Å
β = 95.55 (3)°
V = 912.3 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.43 mm−1
T = 293 K
0.50 × 0.40 × 0.28 mm
Data collection
Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.808, T max = 0.887
5866 measured reflections
2062 independent reflections
1275 reflections with I > 2σ(I)
R int = 0.050
Refinement
R[F 2 > 2σ(F 2)] = 0.048
wR(F 2) = 0.135
S = 0.99
2062 reflections
138 parameters
H-atom parameters constrained
Δρmax = 0.26 e Å−3
Δρmin = −0.30 e Å−3
Data collection: RAPID-AUTO (Rigaku, 1998 ▶); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031407/xu2586sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031407/xu2586Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by China North Industries Group Corporation (project No. ZC060302-15).
supplementary crystallographic information
Comment
Pyridine derivatives are important intermediates used to synthesize pesticide, medicine and play important roles in fine chemical field. 3-Chloro-5-methoxyl- 2,6-dinitro-pyridine was synthesized from 3,5-dichloropyridine N-oxide by substitution and nitration (Bissell et al., 1987), and the process was improved by Chen et al. (2008). The crystal structure of the title compound is presented here.
The molecular structure of the title compound is shown in Fig. 1. While the methoxyl group, except H atoms, is co-planar with the pyridine ring, the two nitro groups are twisted with respect to the pyridine ring with dihedral angles of 33.12 (13) and 63.66 (14)°, respectively. Neither hydrogen bonding nor π-π stacking is observed in the crystal structure.
Experimental
The title compound was prepared according to a literature method (Chen et al., 2008). Crystals suitable for X-ray analysis were obtained by slow evaporation of 1,2-dichloroethane.
Refinement
H atoms were positioned geometrically and refined using a ride model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atom.
Figures
Fig. 1.
The molecular structure of title compound, with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
Crystal data
| C6H4ClN3O5 | F(000) = 472 |
| Mr = 233.57 | Dx = 1.701 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 5866 reflections |
| a = 6.6490 (13) Å | θ = 2.5–27.5° |
| b = 10.842 (2) Å | µ = 0.43 mm−1 |
| c = 12.715 (3) Å | T = 293 K |
| β = 95.55 (3)° | Block, colorless |
| V = 912.3 (3) Å3 | 0.50 × 0.40 × 0.28 mm |
| Z = 4 |
Data collection
| Rigaku R-AXIS RAPID IP diffractometer | 2062 independent reflections |
| Radiation source: fine-focus sealed tube | 1275 reflections with I > 2σ(I) |
| graphite | Rint = 0.050 |
| Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
| ω scans | h = −8→8 |
| Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
| Tmin = 0.808, Tmax = 0.887 | l = −16→16 |
| 5866 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
| wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.99 | (Δ/σ)max < 0.001 |
| 2062 reflections | Δρmax = 0.26 e Å−3 |
| 138 parameters | Δρmin = −0.30 e Å−3 |
| 0 restraints | Extinction correction: SHELXTL (Version 4.2; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.157 (11) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.17055 (10) | 0.52802 (8) | 0.42365 (6) | 0.0756 (3) | |
| O1 | 0.8010 (3) | 0.77739 (16) | 0.37270 (12) | 0.0536 (5) | |
| O2 | 0.2241 (4) | 0.3362 (2) | 0.27062 (18) | 0.0939 (8) | |
| O3 | 0.2590 (3) | 0.4071 (2) | 0.11455 (16) | 0.0716 (6) | |
| O4 | 0.8115 (4) | 0.7839 (2) | 0.14363 (19) | 0.0949 (8) | |
| O5 | 0.9482 (4) | 0.6061 (2) | 0.1524 (2) | 0.1051 (9) | |
| N1 | 0.5510 (3) | 0.55114 (17) | 0.20338 (15) | 0.0439 (5) | |
| N2 | 0.2845 (3) | 0.4126 (2) | 0.2107 (2) | 0.0590 (6) | |
| N3 | 0.8230 (3) | 0.6789 (2) | 0.17477 (16) | 0.0556 (6) | |
| C1 | 0.4068 (3) | 0.5141 (2) | 0.25985 (18) | 0.0440 (5) | |
| C2 | 0.3749 (3) | 0.5646 (2) | 0.35677 (18) | 0.0453 (6) | |
| C3 | 0.5061 (3) | 0.6544 (2) | 0.39881 (17) | 0.0443 (5) | |
| H3 | 0.4898 | 0.6885 | 0.4645 | 0.053* | |
| C4 | 0.6614 (3) | 0.6929 (2) | 0.34246 (16) | 0.0407 (5) | |
| C5 | 0.6705 (3) | 0.6373 (2) | 0.24397 (16) | 0.0412 (5) | |
| C6 | 0.7921 (5) | 0.8349 (3) | 0.47424 (19) | 0.0657 (8) | |
| H6A | 0.6641 | 0.8754 | 0.4761 | 0.099* | |
| H6B | 0.8989 | 0.8944 | 0.4857 | 0.099* | |
| H6C | 0.8073 | 0.7732 | 0.5286 | 0.099* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0570 (4) | 0.0974 (6) | 0.0777 (5) | −0.0107 (4) | 0.0343 (4) | 0.0139 (4) |
| O1 | 0.0575 (10) | 0.0580 (10) | 0.0474 (9) | −0.0144 (8) | 0.0153 (8) | −0.0112 (8) |
| O2 | 0.1109 (18) | 0.0831 (15) | 0.0882 (15) | −0.0542 (15) | 0.0115 (13) | 0.0088 (12) |
| O3 | 0.0704 (12) | 0.0772 (13) | 0.0661 (13) | −0.0183 (10) | 0.0006 (10) | −0.0065 (10) |
| O4 | 0.1047 (18) | 0.0908 (18) | 0.0946 (16) | −0.0134 (14) | 0.0377 (14) | 0.0320 (13) |
| O5 | 0.0869 (16) | 0.1075 (19) | 0.133 (2) | 0.0047 (15) | 0.0717 (15) | −0.0076 (16) |
| N1 | 0.0418 (10) | 0.0451 (10) | 0.0457 (10) | −0.0002 (9) | 0.0083 (8) | −0.0001 (8) |
| N2 | 0.0494 (12) | 0.0609 (14) | 0.0666 (15) | −0.0129 (11) | 0.0060 (10) | 0.0026 (11) |
| N3 | 0.0526 (12) | 0.0688 (15) | 0.0481 (11) | −0.0127 (11) | 0.0182 (9) | −0.0061 (11) |
| C1 | 0.0400 (11) | 0.0430 (12) | 0.0492 (12) | −0.0024 (10) | 0.0053 (10) | 0.0060 (10) |
| C2 | 0.0388 (11) | 0.0492 (13) | 0.0493 (13) | 0.0041 (10) | 0.0121 (9) | 0.0141 (10) |
| C3 | 0.0468 (12) | 0.0476 (13) | 0.0405 (12) | 0.0064 (11) | 0.0150 (9) | 0.0035 (10) |
| C4 | 0.0415 (11) | 0.0395 (11) | 0.0422 (12) | 0.0038 (10) | 0.0096 (9) | 0.0035 (9) |
| C5 | 0.0364 (10) | 0.0460 (12) | 0.0423 (11) | 0.0004 (10) | 0.0097 (9) | 0.0037 (9) |
| C6 | 0.0845 (19) | 0.0678 (17) | 0.0463 (14) | −0.0182 (15) | 0.0138 (13) | −0.0125 (12) |
Geometric parameters (Å, °)
| Cl1—C2 | 1.717 (2) | N3—C5 | 1.476 (3) |
| O1—C4 | 1.334 (3) | C1—C2 | 1.384 (3) |
| O1—C6 | 1.440 (3) | C2—C3 | 1.380 (3) |
| O2—N2 | 1.219 (3) | C3—C4 | 1.378 (3) |
| O3—N2 | 1.219 (3) | C3—H3 | 0.9300 |
| O4—N3 | 1.206 (3) | C4—C5 | 1.396 (3) |
| O5—N3 | 1.201 (3) | C6—H6A | 0.9600 |
| N1—C5 | 1.300 (3) | C6—H6B | 0.9600 |
| N1—C1 | 1.315 (3) | C6—H6C | 0.9600 |
| N2—C1 | 1.472 (3) | ||
| C4—O1—C6 | 117.90 (18) | C4—C3—H3 | 120.3 |
| C5—N1—C1 | 116.89 (19) | C2—C3—H3 | 120.3 |
| O3—N2—O2 | 124.9 (2) | O1—C4—C3 | 126.4 (2) |
| O3—N2—C1 | 118.7 (2) | O1—C4—C5 | 117.78 (18) |
| O2—N2—C1 | 116.4 (2) | C3—C4—C5 | 115.8 (2) |
| O5—N3—O4 | 124.5 (2) | N1—C5—C4 | 126.05 (19) |
| O5—N3—C5 | 118.2 (2) | N1—C5—N3 | 114.31 (18) |
| O4—N3—C5 | 117.3 (2) | C4—C5—N3 | 119.6 (2) |
| N1—C1—C2 | 123.3 (2) | O1—C6—H6A | 109.5 |
| N1—C1—N2 | 113.5 (2) | O1—C6—H6B | 109.5 |
| C2—C1—N2 | 123.2 (2) | H6A—C6—H6B | 109.5 |
| C3—C2—C1 | 118.6 (2) | O1—C6—H6C | 109.5 |
| C3—C2—Cl1 | 118.16 (18) | H6A—C6—H6C | 109.5 |
| C1—C2—Cl1 | 123.13 (19) | H6B—C6—H6C | 109.5 |
| C4—C3—C2 | 119.3 (2) | ||
| C5—N1—C1—C2 | 1.9 (3) | C6—O1—C4—C5 | −180.0 (2) |
| C5—N1—C1—N2 | −177.3 (2) | C2—C3—C4—O1 | −179.3 (2) |
| O3—N2—C1—N1 | −31.5 (3) | C2—C3—C4—C5 | 1.0 (3) |
| O2—N2—C1—N1 | 145.0 (2) | C1—N1—C5—C4 | 0.9 (3) |
| O3—N2—C1—C2 | 149.3 (2) | C1—N1—C5—N3 | −177.3 (2) |
| O2—N2—C1—C2 | −34.2 (4) | O1—C4—C5—N1 | 178.0 (2) |
| N1—C1—C2—C3 | −3.1 (3) | C3—C4—C5—N1 | −2.3 (3) |
| N2—C1—C2—C3 | 176.0 (2) | O1—C4—C5—N3 | −4.0 (3) |
| N1—C1—C2—Cl1 | 172.71 (17) | C3—C4—C5—N3 | 175.7 (2) |
| N2—C1—C2—Cl1 | −8.2 (3) | O5—N3—C5—N1 | −64.2 (3) |
| C1—C2—C3—C4 | 1.4 (3) | O4—N3—C5—N1 | 115.0 (3) |
| Cl1—C2—C3—C4 | −174.58 (16) | O5—N3—C5—C4 | 117.5 (3) |
| C6—O1—C4—C3 | 0.3 (3) | O4—N3—C5—C4 | −63.3 (3) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2586).
References
- Bissell, E. R. & Swansiger, R. W. (1987). J. Heterocycl. Chem.24, 59–62.
- Chen, J., Li, Q.-L. & Wang, J.-L. (2008). Chin. J. Org. Chem.28, 123–126.
- Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku (2000). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031407/xu2586sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031407/xu2586Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

