Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):o2284. doi: 10.1107/S1600536809033935

9,9-Dimethyl-12-(3-nitro­phen­yl)-7,8,9,10,11,12-hexa­hydro­benz[a]acridin-11-one

Runhong Jia a, Juhua Peng a, Shujiang Tu b,*
PMCID: PMC2969871  PMID: 21577677

Abstract

The title compound, C25H22N2O3, was synthesized by the reaction of 3-nitro­benzaldehyde, dimedone and 2-naphthyl­amine in ethanol. In the mol­ecular structure, the cyclo­hexenone ring adopts an envelope conformation, whereas the piperidine ring has a boat conformation. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological and physical activity of compounds containing the acridine skeleton, see: Wysocka-Skrzela & Ledochowski (1976); Matsumoto et al. (1983); Popielarz et al. (1997). Jia et al. (2007); Kidwai & Rastogi (2005); Srividya et al. (1996). For microwave irradiation in organic synthesis, see: Tu et al. (2002, 2004). For related structures, see: Jia et al. (2006); Wang et al. (2006); Tu et al. (2006).graphic file with name e-65-o2284-scheme1.jpg

Experimental

Crystal data

  • C25H22N2O3

  • M r = 398.45

  • Monoclinic, Inline graphic

  • a = 10.264 (7) Å

  • b = 13.099 (9) Å

  • c = 15.018 (10) Å

  • β = 94.403 (10)°

  • V = 2013 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.985, T max = 0.991

  • 10293 measured reflections

  • 3541 independent reflections

  • 1401 reflections with I > 2σ(I)

  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.185

  • S = 1.01

  • 3541 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033935/zq2005sup1.cif

e-65-o2284-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033935/zq2005Isup2.hkl

e-65-o2284-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.13 2.937 (4) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the National Science Foundation of China (No. 20672090) and the Natural Science Foundation of Jiangsu Province (No. BK2006033) and the Graduate Foundation of Xuzhou Normal University (No. 08YLB031) for financial support.

supplementary crystallographic information

Comment

A lot of natural and synthetic compounds containing the acridine skeleton display interesting biological and physical activities, such as antimalaria (Wysocka-Skrzela et al. 1976) and antitumor agents (Matsumoto et al. 1983), and multihydroacridineone derivatives have been reported to have high fluorescence efficiency and can be used as fluorescent molecular probes for monitoring of polymerization process (Popielarz et al. 1997). They are also increasingly receiving attention due to their likeness in properties with those of 1,4-dihydropyridines, which have similarities in structure to the biologically important compounds such as NADH and NADPH (Srividya et al. 1996). As a consequence, the interest of organic chemists in the synthesis or structure modifications of acridinedione derivatives remains high. Microwave irradiation is a very useful technique in organic synthesis (Tu et al. 2002). It is a simple, timesaving, high yielding, and environmentally friendly process. We have already reported the synthesis of heterocyclic compounds under microwave irradiation (Tu et al. 2004). M. Kidwai and S. Rastogi have reported the synthesis of polyhydroacridinones without additional fused benzene rings (Kidwai et al. 2005). The efficiency of microwave irradiation in promoting organic reaction and the success of its application in heterocyclic synthesis (Jia et al. 2007) has rapidly gained in popularity. Therefore design and synthesis of these compounds has been challenging. For these reasons, the synthesis of compounds containing cyanopyridine derivatives is strongly desired. In this paper we report the crystal structure of the title compound (I).

In the crystal structure, the dihedral angle between the C1/C6/C8/C17/N1 plane and the C20—C25 benzene ring is 83.5 (8)° (Fig. 1). The dihedral angle between the C1/C6/C8/C17/N1 plane and the C8/C9/C14/C15/C16/C17 plane is 5.8 (5)°. The dihedral angle between the C1/C6/C8/C17/N1 plane and the C1/C2/C4/C5/C6 plane is 11.4 (4)°, indicating that they are almost parallel. The distance between atom C3 and the mean plane C4/C5/C6/C1/C2 is 0.594 (6) Å, showing that the cyclohexenone ring adopts an envelope conformation. The newly formed piperidine ring has a boat conformation with the atoms N1 and C7 deviating from the plane C1/C6/C17/C8 by 0.098 (5) and 0.184 (6) Å, respectively, on the same direction. One chiral center exists in the title compound at C7. The centrosymmetric space group indicates the presence of equimolar enantiomers (S and R) in the crystal structure. The molecules are connected via N1—H1···O1 hydrogen bonds, forming infinite one-dimensional chains along the b axis (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 3-nitrobenzaldehyde (1 mmol), dimedone (1 mmol), 2-naphthylamine (1 mmol), in ethanol (2 ml) under microwave irradiation without catalyst. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 92%; m.p. 567–569 K). IR (cm-1): 3260, 2928, 1582, 1522, 1494, 1385, 1234, 1155, 1093, 982, 923, 811, 729, 687, 654; 1H NMR (DMSO-d6): 0.82 (s, 3H, CH3), 1.06 (s, 3H, CH3), 2.04 (d, 1H, J = 16.0 Hz, CH), 2.25 (d, 1H, J = 16.0 Hz, CH), 2.43 (d, 1H, J = 16.4 Hz, CH), 2.58 (d, 1H, J = 16.4 Hz, CH), 5.97 (s, 1H, CH), 7.48–7.31 (m, 4H, ArH), 7.70 (d, 1H, J = 7.6 Hz, ArH),7.96–7.82 (m, 4H, ArH), 8.07 (s, 1H, ArH), 9.90 (s, 1H, NH).

Refinement

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C,N) for others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of the title compound viewed along the a axis.

Crystal data

C25H22N2O3 F(000) = 840
Mr = 398.45 Dx = 1.315 Mg m3
Monoclinic, P21/n Melting point = 567–569 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 10.264 (7) Å Cell parameters from 1084 reflections
b = 13.099 (9) Å θ = 2.5–22.0°
c = 15.018 (10) Å µ = 0.09 mm1
β = 94.403 (10)° T = 298 K
V = 2013 (2) Å3 Block, colourless
Z = 4 0.17 × 0.16 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3541 independent reflections
Radiation source: fine-focus sealed tube 1401 reflections with I > 2σ(I)
graphite Rint = 0.078
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −12→11
Tmin = 0.985, Tmax = 0.991 k = −15→15
10293 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0662P)2] where P = (Fo2 + 2Fc2)/3
3541 reflections (Δ/σ)max < 0.001
273 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1648 (3) 0.5920 (2) 0.2710 (2) 0.0467 (9)
H1 0.1878 0.5298 0.2818 0.056*
N2 −0.1766 (5) 0.6049 (4) −0.0481 (3) 0.0780 (14)
O1 0.2576 (3) 0.9019 (2) 0.1356 (2) 0.0511 (8)
O2 −0.1419 (4) 0.5259 (4) −0.0133 (3) 0.1142 (16)
O3 −0.2455 (6) 0.6095 (4) −0.1163 (3) 0.154 (2)
C1 0.2442 (4) 0.6520 (3) 0.2254 (3) 0.0382 (10)
C2 0.3791 (4) 0.6138 (3) 0.2166 (3) 0.0473 (11)
H2A 0.3751 0.5409 0.2050 0.057*
H2B 0.4301 0.6238 0.2730 0.057*
C3 0.4497 (4) 0.6650 (3) 0.1429 (3) 0.0455 (11)
C4 0.4294 (4) 0.7796 (3) 0.1489 (3) 0.0517 (12)
H4A 0.4839 0.8052 0.1997 0.062*
H4B 0.4596 0.8109 0.0958 0.062*
C5 0.2909 (4) 0.8141 (3) 0.1584 (3) 0.0433 (11)
C6 0.2012 (4) 0.7453 (3) 0.1960 (3) 0.0353 (10)
C7 0.0640 (4) 0.7834 (3) 0.2070 (3) 0.0372 (10)
H7 0.0708 0.8533 0.2301 0.045*
C8 −0.0039 (4) 0.7197 (3) 0.2741 (3) 0.0391 (10)
C9 −0.1215 (4) 0.7545 (3) 0.3091 (3) 0.0415 (11)
C10 −0.1783 (4) 0.8501 (3) 0.2861 (3) 0.0493 (12)
H10 −0.1378 0.8931 0.2474 0.059*
C11 −0.2924 (4) 0.8803 (4) 0.3201 (3) 0.0644 (14)
H11 −0.3273 0.9442 0.3057 0.077*
C12 −0.3568 (5) 0.8154 (5) 0.3765 (4) 0.0744 (16)
H12 −0.4357 0.8353 0.3978 0.089*
C13 −0.3039 (5) 0.7236 (4) 0.4000 (3) 0.0653 (15)
H13 −0.3464 0.6818 0.4387 0.078*
C14 −0.1868 (4) 0.6900 (4) 0.3676 (3) 0.0520 (12)
C15 −0.1288 (5) 0.5958 (4) 0.3933 (3) 0.0618 (14)
H15 −0.1694 0.5544 0.4332 0.074*
C16 −0.0156 (4) 0.5643 (3) 0.3615 (3) 0.0529 (12)
H16 0.0207 0.5018 0.3792 0.063*
C17 0.0466 (4) 0.6269 (3) 0.3013 (3) 0.0423 (11)
C18 0.5955 (4) 0.6397 (3) 0.1543 (4) 0.0666 (15)
H18A 0.6306 0.6617 0.2122 0.100*
H18B 0.6400 0.6742 0.1091 0.100*
H18C 0.6073 0.5674 0.1488 0.100*
C19 0.3959 (4) 0.6251 (4) 0.0517 (3) 0.0666 (15)
H19A 0.4112 0.5530 0.0484 0.100*
H19B 0.4390 0.6591 0.0055 0.100*
H19C 0.3037 0.6382 0.0438 0.100*
C20 −0.0192 (4) 0.7865 (3) 0.1176 (3) 0.0354 (10)
C21 −0.0601 (4) 0.6960 (3) 0.0759 (3) 0.0404 (11)
H21 −0.0350 0.6334 0.1009 0.049*
C22 −0.1379 (4) 0.7000 (4) −0.0025 (3) 0.0520 (12)
C23 −0.1796 (4) 0.7900 (5) −0.0420 (3) 0.0643 (14)
H23 −0.2344 0.7903 −0.0942 0.077*
C24 −0.1373 (5) 0.8802 (4) −0.0016 (3) 0.0660 (15)
H24 −0.1631 0.9425 −0.0269 0.079*
C25 −0.0565 (4) 0.8776 (3) 0.0769 (3) 0.0508 (12)
H25 −0.0267 0.9387 0.1027 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.054 (2) 0.034 (2) 0.053 (2) 0.0032 (18) 0.0093 (19) 0.0036 (18)
N2 0.078 (3) 0.089 (4) 0.065 (3) −0.042 (3) −0.008 (3) −0.005 (3)
O1 0.0500 (18) 0.0375 (18) 0.066 (2) −0.0060 (15) 0.0069 (15) 0.0026 (16)
O2 0.118 (4) 0.078 (3) 0.141 (4) −0.026 (3) −0.029 (3) −0.021 (3)
O3 0.222 (6) 0.148 (4) 0.079 (3) −0.086 (4) −0.072 (4) 0.013 (3)
C1 0.036 (3) 0.040 (3) 0.038 (3) −0.004 (2) −0.001 (2) −0.003 (2)
C2 0.045 (3) 0.045 (3) 0.051 (3) 0.005 (2) 0.001 (2) −0.002 (2)
C3 0.033 (3) 0.051 (3) 0.052 (3) 0.000 (2) 0.004 (2) −0.001 (2)
C4 0.034 (3) 0.050 (3) 0.072 (3) 0.000 (2) 0.009 (2) 0.004 (3)
C5 0.043 (3) 0.043 (3) 0.043 (3) −0.005 (2) 0.001 (2) −0.007 (2)
C6 0.031 (2) 0.035 (2) 0.040 (3) −0.0017 (19) 0.0066 (19) −0.002 (2)
C7 0.036 (2) 0.033 (2) 0.042 (3) 0.000 (2) 0.005 (2) −0.001 (2)
C8 0.038 (3) 0.046 (3) 0.034 (2) −0.005 (2) 0.002 (2) 0.001 (2)
C9 0.038 (3) 0.051 (3) 0.036 (3) −0.005 (2) 0.003 (2) −0.005 (2)
C10 0.045 (3) 0.057 (3) 0.046 (3) 0.002 (2) 0.008 (2) −0.002 (2)
C11 0.048 (3) 0.082 (4) 0.064 (4) 0.009 (3) 0.009 (3) −0.010 (3)
C12 0.044 (3) 0.105 (5) 0.076 (4) −0.003 (3) 0.018 (3) −0.006 (4)
C13 0.053 (3) 0.090 (4) 0.055 (3) −0.015 (3) 0.017 (3) 0.002 (3)
C14 0.040 (3) 0.070 (4) 0.047 (3) −0.010 (3) 0.009 (2) 0.000 (3)
C15 0.068 (4) 0.066 (4) 0.053 (3) −0.016 (3) 0.016 (3) 0.006 (3)
C16 0.062 (3) 0.049 (3) 0.048 (3) −0.003 (2) 0.009 (3) 0.010 (2)
C17 0.047 (3) 0.041 (3) 0.040 (3) −0.005 (2) 0.006 (2) 0.000 (2)
C18 0.041 (3) 0.067 (3) 0.092 (4) 0.005 (2) 0.005 (3) 0.000 (3)
C19 0.069 (4) 0.080 (4) 0.051 (3) −0.003 (3) 0.010 (3) −0.007 (3)
C20 0.029 (2) 0.039 (3) 0.038 (2) 0.004 (2) 0.0070 (19) 0.005 (2)
C21 0.036 (3) 0.045 (3) 0.041 (3) −0.003 (2) 0.005 (2) 0.007 (2)
C22 0.046 (3) 0.072 (4) 0.039 (3) −0.011 (3) 0.008 (2) −0.001 (3)
C23 0.055 (3) 0.097 (4) 0.040 (3) 0.000 (3) 0.000 (2) 0.021 (3)
C24 0.070 (4) 0.074 (4) 0.054 (3) 0.024 (3) 0.006 (3) 0.020 (3)
C25 0.054 (3) 0.044 (3) 0.055 (3) 0.002 (2) 0.010 (2) 0.001 (2)

Geometric parameters (Å, °)

N1—C1 1.355 (5) C10—H10 0.9300
N1—C17 1.405 (5) C11—C12 1.401 (6)
N1—H1 0.8600 C11—H11 0.9300
N2—O3 1.201 (5) C12—C13 1.355 (7)
N2—O2 1.201 (5) C12—H12 0.9300
N2—C22 1.462 (6) C13—C14 1.402 (6)
O1—C5 1.241 (5) C13—H13 0.9300
C1—C6 1.361 (5) C14—C15 1.411 (6)
C1—C2 1.489 (5) C15—C16 1.355 (6)
C2—C3 1.524 (5) C15—H15 0.9300
C2—H2A 0.9700 C16—C17 1.409 (5)
C2—H2B 0.9700 C16—H16 0.9300
C3—C4 1.520 (6) C18—H18A 0.9600
C3—C18 1.529 (5) C18—H18B 0.9600
C3—C19 1.529 (6) C18—H18C 0.9600
C4—C5 1.508 (5) C19—H19A 0.9600
C4—H4A 0.9700 C19—H19B 0.9600
C4—H4B 0.9700 C19—H19C 0.9600
C5—C6 1.435 (5) C20—C25 1.381 (5)
C6—C7 1.515 (5) C20—C21 1.391 (5)
C7—C8 1.518 (5) C21—C22 1.372 (6)
C7—C20 1.535 (5) C21—H21 0.9300
C7—H7 0.9800 C22—C23 1.374 (6)
C8—C17 1.371 (5) C23—C24 1.382 (7)
C8—C9 1.428 (5) C23—H23 0.9300
C9—C10 1.413 (6) C24—C25 1.389 (6)
C9—C14 1.423 (6) C24—H24 0.9300
C10—C11 1.372 (6) C25—H25 0.9300
C1—N1—C17 122.9 (3) C12—C11—H11 119.8
C1—N1—H1 118.6 C13—C12—C11 119.8 (5)
C17—N1—H1 118.6 C13—C12—H12 120.1
O3—N2—O2 123.3 (5) C11—C12—H12 120.1
O3—N2—C22 118.6 (6) C12—C13—C14 121.6 (5)
O2—N2—C22 118.0 (5) C12—C13—H13 119.2
N1—C1—C6 119.5 (4) C14—C13—H13 119.2
N1—C1—C2 116.7 (4) C13—C14—C15 122.3 (5)
C6—C1—C2 123.6 (4) C13—C14—C9 119.0 (5)
C1—C2—C3 114.4 (3) C15—C14—C9 118.7 (4)
C1—C2—H2A 108.6 C16—C15—C14 121.7 (4)
C3—C2—H2A 108.6 C16—C15—H15 119.2
C1—C2—H2B 108.6 C14—C15—H15 119.2
C3—C2—H2B 108.6 C15—C16—C17 119.5 (4)
H2A—C2—H2B 107.6 C15—C16—H16 120.3
C4—C3—C2 108.4 (3) C17—C16—H16 120.3
C4—C3—C18 110.2 (3) C8—C17—N1 120.5 (4)
C2—C3—C18 109.8 (4) C8—C17—C16 121.9 (4)
C4—C3—C19 110.5 (4) N1—C17—C16 117.6 (4)
C2—C3—C19 109.9 (4) C3—C18—H18A 109.5
C18—C3—C19 108.0 (4) C3—C18—H18B 109.5
C5—C4—C3 115.9 (3) H18A—C18—H18B 109.5
C5—C4—H4A 108.3 C3—C18—H18C 109.5
C3—C4—H4A 108.3 H18A—C18—H18C 109.5
C5—C4—H4B 108.3 H18B—C18—H18C 109.5
C3—C4—H4B 108.3 C3—C19—H19A 109.5
H4A—C4—H4B 107.4 C3—C19—H19B 109.5
O1—C5—C6 121.2 (4) H19A—C19—H19B 109.5
O1—C5—C4 119.6 (4) C3—C19—H19C 109.5
C6—C5—C4 119.2 (4) H19A—C19—H19C 109.5
C1—C6—C5 119.3 (4) H19B—C19—H19C 109.5
C1—C6—C7 122.7 (3) C25—C20—C21 118.3 (4)
C5—C6—C7 117.8 (4) C25—C20—C7 121.8 (4)
C6—C7—C8 111.7 (3) C21—C20—C7 119.9 (4)
C6—C7—C20 111.8 (3) C22—C21—C20 119.3 (4)
C8—C7—C20 110.0 (3) C22—C21—H21 120.4
C6—C7—H7 107.7 C20—C21—H21 120.4
C8—C7—H7 107.7 C21—C22—C23 123.0 (5)
C20—C7—H7 107.7 C21—C22—N2 119.2 (5)
C17—C8—C9 119.0 (4) C23—C22—N2 117.7 (5)
C17—C8—C7 120.2 (4) C22—C23—C24 117.9 (4)
C9—C8—C7 120.8 (4) C22—C23—H23 121.1
C10—C9—C14 118.2 (4) C24—C23—H23 121.1
C10—C9—C8 122.5 (4) C23—C24—C25 119.9 (5)
C14—C9—C8 119.3 (4) C23—C24—H24 120.0
C11—C10—C9 120.8 (4) C25—C24—H24 120.0
C11—C10—H10 119.6 C20—C25—C24 121.6 (4)
C9—C10—H10 119.6 C20—C25—H25 119.2
C10—C11—C12 120.5 (5) C24—C25—H25 119.2
C10—C11—H11 119.8
C17—N1—C1—C6 −9.7 (6) C11—C12—C13—C14 −1.5 (8)
C17—N1—C1—C2 165.8 (4) C12—C13—C14—C15 178.3 (5)
N1—C1—C2—C3 162.1 (3) C12—C13—C14—C9 0.5 (7)
C6—C1—C2—C3 −22.5 (6) C10—C9—C14—C13 −0.1 (6)
C1—C2—C3—C4 45.8 (5) C8—C9—C14—C13 −178.4 (4)
C1—C2—C3—C18 166.2 (4) C10—C9—C14—C15 −178.0 (4)
C1—C2—C3—C19 −75.1 (5) C8—C9—C14—C15 3.8 (6)
C2—C3—C4—C5 −47.4 (5) C13—C14—C15—C16 180.0 (5)
C18—C3—C4—C5 −167.5 (4) C9—C14—C15—C16 −2.3 (7)
C19—C3—C4—C5 73.1 (5) C14—C15—C16—C17 0.2 (7)
C3—C4—C5—O1 −157.1 (4) C9—C8—C17—N1 −177.4 (3)
C3—C4—C5—C6 24.7 (6) C7—C8—C17—N1 3.1 (6)
N1—C1—C6—C5 171.8 (4) C9—C8—C17—C16 1.3 (6)
C2—C1—C6—C5 −3.5 (6) C7—C8—C17—C16 −178.2 (4)
N1—C1—C6—C7 −3.8 (6) C1—N1—C17—C8 10.1 (6)
C2—C1—C6—C7 −179.0 (4) C1—N1—C17—C16 −168.7 (4)
O1—C5—C6—C1 −175.7 (4) C15—C16—C17—C8 0.3 (7)
C4—C5—C6—C1 2.5 (6) C15—C16—C17—N1 179.0 (4)
O1—C5—C6—C7 0.1 (6) C6—C7—C20—C25 −109.8 (4)
C4—C5—C6—C7 178.2 (4) C8—C7—C20—C25 125.4 (4)
C1—C6—C7—C8 15.0 (5) C6—C7—C20—C21 70.8 (4)
C5—C6—C7—C8 −160.6 (3) C8—C7—C20—C21 −53.9 (5)
C1—C6—C7—C20 −108.8 (4) C25—C20—C21—C22 −1.5 (6)
C5—C6—C7—C20 75.6 (4) C7—C20—C21—C22 177.9 (4)
C6—C7—C8—C17 −14.3 (5) C20—C21—C22—C23 −0.9 (6)
C20—C7—C8—C17 110.5 (4) C20—C21—C22—N2 177.6 (4)
C6—C7—C8—C9 166.3 (3) O3—N2—C22—C21 179.4 (5)
C20—C7—C8—C9 −68.9 (4) O2—N2—C22—C21 2.4 (7)
C17—C8—C9—C10 178.5 (4) O3—N2—C22—C23 −2.0 (7)
C7—C8—C9—C10 −2.0 (6) O2—N2—C22—C23 −179.0 (5)
C17—C8—C9—C14 −3.3 (6) C21—C22—C23—C24 2.0 (7)
C7—C8—C9—C14 176.2 (4) N2—C22—C23—C24 −176.6 (4)
C14—C9—C10—C11 0.8 (6) C22—C23—C24—C25 −0.6 (7)
C8—C9—C10—C11 179.0 (4) C21—C20—C25—C24 2.8 (6)
C9—C10—C11—C12 −1.8 (7) C7—C20—C25—C24 −176.6 (4)
C10—C11—C12—C13 2.2 (8) C23—C24—C25—C20 −1.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.13 2.937 (4) 156

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2005).

References

  1. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jia, R. H., Tu, S. J., Zhang, Y., Jiang, B., Zhang, J. Y., Yao, C. S. & Shi, F. (2007). J. Heterocycl. Chem.44, 1177–1180.
  3. Jia, R.-H., Zhang, Q.-S., Tu, S.-J. & Zhang, Y. (2006). Acta Cryst. E62, o2032–o2033.
  4. Kidwai, M. & Rastogi, S. (2005). Heteroat. Chem.16, 138–141.
  5. Matsumoto, H., Arai, T., Takahashi, M., Ashizawa, T., Nakano, T. & Nagai, Y. (1983). Bull. Chem. Soc. Jpn, 56, 3009–3014.
  6. Popielarz, R., Hu, S. K. & Neckers, D. C. J. (1997). Photochem. Photobiol. A, 110, 79–83.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem.61, 5083–5089.
  9. Tu, S. J., Jia, R. H., Jiang, B., Zhang, Y. & Zhang, J. Y. (2006). J. Heterocycl. Chem.43, 1621–1628.
  10. Tu, S. J., Lu, Z. S., Shi, D. Q., Yao, C. S., Gao, Y. & Guo, C. (2002). Synth. Commun.32, 2181–2185.
  11. Tu, S. J., Miao, C. B., Fang, F., Feng, Y. J., Li, T. J., Zhuang, Q. Y., Zhang, X. J., Zhu, S. L. & Shi, D. Q. (2004). Bioorg. Med. Chem. Lett.14, 1533–1536. [DOI] [PubMed]
  12. Wang, X. S., Zhang, M. M., Zeng, Z. S., Shi, D. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). J. Heterocycl. Chem. 43, 989–996.
  13. Wysocka-Skrzela, B. & Ledochowski, A. (1976). Roccz. Chem.50, 127–131.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033935/zq2005sup1.cif

e-65-o2284-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033935/zq2005Isup2.hkl

e-65-o2284-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES