Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):o2168–o2169. doi: 10.1107/S1600536809031900

(Z)-3-(9-Anthr­yl)-1-(2-thien­yl)prop-2-en-1-one1

Hoong-Kun Fun a,*,, Thitipone Suwunwong b, Nawong Boonnak b, Suchada Chantrapromma b,§
PMCID: PMC2969873  PMID: 21577575

Abstract

There are two crystallographically independent mol­ecules in the asymmetric unit of the title heteroaryl chalcone, C21H14OS: the dihedral angle between the thio­phene and anthracene rings is 75.07 (17)° in one mol­ecule and 76.32 (17)° in the other. The crystal structure is consolidated by short C⋯O [3.348 (5)–3.394 (5) Å], C⋯S [3.607 (5)–3.666 (5) Å] and S⋯O [2.926 (3) Å] contacts, as well as by C—H⋯π and π–π inter­actions [CgCg = 3.745 (3) Å].

Related literature

For related structures, see: Chantrapromma et al. (2009); Suwunwong et al. (2009a ,b ). For background to and applications of chalcones, see: Oliveira et al. (2007); Patil & Dharmaprakash (2008); Saydam et al. (2003); Svetlichny et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).graphic file with name e-65-o2168-scheme1.jpg

Experimental

Crystal data

  • C21H14OS

  • M r = 314.39

  • Orthorhombic, Inline graphic

  • a = 14.6675 (2) Å

  • b = 5.5096 (1) Å

  • c = 37.9823 (4) Å

  • V = 3069.43 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.30 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.939, T max = 0.979

  • 28929 measured reflections

  • 6662 independent reflections

  • 5348 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.200

  • S = 1.06

  • 6662 reflections

  • 391 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983), 3093 Friedel pairs

  • Flack parameter: 0.09 (15)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031900/tk2522sup1.cif

e-65-o2168-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031900/tk2522Isup2.hkl

e-65-o2168-Isup2.hkl (326.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3AACg3i 0.93 2.99 3.679 (5) 132
C10A—H10ACg2ii 0.93 2.95 3.694 (5) 138
C10B—H10BCg5i 0.93 2.93 3.594 (5) 129
C15A—H15ACg3iii 0.93 2.76 3.550 (5) 143
C15B—H15BCg6iii 0.93 2.94 3.689 (5) 139
C19A—H19ACg4 0.93 2.72 3.486 (5) 140
C19B—H19BCg1iii 0.93 2.72 3.458 (5) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the S1A/C18A–C21A, C1A–C6A, C8A–C13A, S1B/C18B–C21B, C1B–C6B and C8B–C13B rings, respectively.

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for a Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcones have been studied for their chemical and biological activities for a long time. They have a wide range of applications such as in non-linear optical (NLO) materials (Patil & Dharmaprakash, 2008), fluorescent materials (Svetlichny et al., 2007) and for showing various biological activities (Saydam et al., 2003). The anthracene moieties are well known for their high absorption co-efficients as well as their high fluorescence yields (Oliveira et al., 2007). These interesting properties has lead us to synthesize the title heteroaryl chalcone derivative, (I), which contains the donor sub-unit (anthracene) and fluorophore (thiophene) in order to study its NLO and fluorescent properties. We have previously synthesized and reported the crystal structures of chalcones and heteroaryl chalcone derivatives (Chantrapromma et al., 2009; Suwunwong et al., 2009a, b) which exist in the E configuartion. Herein, we report the crystal structure of the (I) which is in the Z configuration. Compound (I) crystallizes in the non-centrosymmetric orthorhombic space group Pna21 and therefore, it should exhibit second-order nonlinear optical properties. Moreover, (I) also shows interesting fluorescence properties which will be reported elsewhere.

The asymmetric unit of (I) contains two molecules, A and B, with the same configuration but with slight differences in bond lengths and angles. The molecule of (I)(Fig. 1) exists in an Z configuration with respect to the C15=C16 double bond [1.360 (6) Å in molecule A and 1.331 (6) Å in molecule B]; the C14–C15–C16–C17 torsion angle = -3.7 (7)° in molecule A [-4.0 (7)° in molecule B]. The anthracene unit is essentially planar with the greatest deviation of 0.089 (5) Å at atom C11A [0.086 (5)Å at atom C3B]. The total molecule is twisted as the interplanar angle between thiophene and anthracene rings is 75.07 (17)° and the mean plane through the prop-2-en-1-one unit (C15–C17/O1) makes interplanar angles of 13.1 (3) and 71.2 (3)° with the thiophene and anthracene rings, respectively [the corresponding values are 76.32 (17), 15.2 (3) and 72.3 (3)° in molecule B]. The bond distances are comparable with related structures (Chantrapromma et al., 2009; Suwunwong et al., 2009a, b).

In the crystal packing, the molecules are connected by short C···O [3.348 (5)–3.394 (5) Å], C···S [3.607 (5)–3.666 (5) Å], and S···O [2.926 (3) Å] contacts. The crystal structure is further stabilized by C—H···π interactions (Table 1) and π–π interactions with the Cg1···Cg4i distance being 3.745 (3) Å (i: 1/2 + x, -y + 1/2, z); Cg1 and Cg4 are the centroids of the S1A/C18A–C21A and S1B/C18B–C21B rings, respectively.

Experimental

Compound (I) was synthesized by the condensation of anthracene-9-carbaldehyde (2 mmol, 0.41 g) with 2-acetylthiophene (2 mmol, 0.22 ml) in ethanol (30 ml) in the presence of NaOH (5 ml, 30 %). After stirring for 2 h, a yellow solid appeared which was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization using ethanol/acetone in a 1:5 ratio as solvent. Orange block-shaped crystals of (I) were obtained from hot ethanol by the slow evaporation of the solvent held at room temperature for several days; M.p. 391–392 K.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and Uiso = 1.2Ueq(C). The highest residual electron density peak was located 0.14 Å from atom C19B and the deepest hole was located 0.48 Å from atom S1B.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C21H14OS Dx = 1.361 Mg m3
Mr = 314.39 Melting point = 391–392 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 6662 reflections
a = 14.6675 (2) Å θ = 1.1–27.5°
b = 5.5096 (1) Å µ = 0.21 mm1
c = 37.9823 (4) Å T = 100 K
V = 3069.43 (8) Å3 Block, orange
Z = 8 0.30 × 0.12 × 0.10 mm
F(000) = 1312

Data collection

Bruker APEXII CCD area-detector diffractometer 6662 independent reflections
Radiation source: sealed tube 5348 reflections with I > 2σ(I)
graphite Rint = 0.055
φ and ω scans θmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −19→18
Tmin = 0.939, Tmax = 0.979 k = −7→7
28929 measured reflections l = −49→49

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.1247P)2 + 2.1057P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
6662 reflections Δρmax = 1.58 e Å3
391 parameters Δρmin = −0.82 e Å3
1 restraint Absolute structure: Flack (1983), 3093 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (15)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.80198 (8) −0.2591 (2) 0.30703 (3) 0.0253 (3)
O1A 0.7762 (2) −0.1293 (6) 0.38105 (8) 0.0233 (7)
C1A 0.7530 (3) 0.1889 (8) 0.46578 (11) 0.0157 (8)
C2A 0.8200 (3) 0.3771 (8) 0.46638 (11) 0.0201 (9)
H2AA 0.8239 0.4840 0.4475 0.024*
C3A 0.8784 (3) 0.4033 (9) 0.49401 (12) 0.0252 (10)
H3AA 0.9204 0.5298 0.4942 0.030*
C4A 0.8750 (3) 0.2366 (9) 0.52269 (13) 0.0262 (10)
H4AA 0.9157 0.2533 0.5413 0.031*
C5A 0.8129 (3) 0.0531 (9) 0.52310 (11) 0.0227 (9)
H5AA 0.8121 −0.0544 0.5420 0.027*
C6A 0.7491 (3) 0.0228 (8) 0.49507 (11) 0.0189 (9)
C7A 0.6846 (3) −0.1604 (8) 0.49469 (11) 0.0200 (9)
H7AA 0.6840 −0.2712 0.5132 0.024*
C8A 0.6203 (3) −0.1866 (8) 0.46777 (11) 0.0176 (9)
C9A 0.5528 (3) −0.3732 (9) 0.46845 (13) 0.0240 (10)
H9AA 0.5526 −0.4859 0.4867 0.029*
C10A 0.4888 (3) −0.3872 (9) 0.44255 (12) 0.0263 (10)
H10A 0.4447 −0.5085 0.4433 0.032*
C11A 0.4888 (3) −0.2184 (10) 0.41446 (13) 0.0264 (11)
H11A 0.4438 −0.2268 0.3973 0.032*
C12A 0.5540 (3) −0.0448 (8) 0.41243 (11) 0.0195 (9)
H12A 0.5539 0.0609 0.3933 0.023*
C13A 0.6233 (3) −0.0193 (8) 0.43891 (10) 0.0173 (8)
C14A 0.6914 (3) 0.1587 (8) 0.43721 (10) 0.0153 (8)
C15A 0.6981 (3) 0.3295 (8) 0.40749 (11) 0.0186 (9)
H15A 0.6851 0.4914 0.4123 0.022*
C16A 0.7215 (3) 0.2743 (8) 0.37378 (12) 0.0172 (9)
H16A 0.7196 0.3990 0.3573 0.021*
C17A 0.7496 (3) 0.0316 (8) 0.36137 (11) 0.0169 (9)
C18A 0.7486 (3) −0.0075 (8) 0.32292 (11) 0.0156 (8)
C19A 0.7103 (3) 0.1397 (9) 0.29449 (11) 0.0176 (5)
H19A 0.6789 0.2851 0.2973 0.021*
C20A 0.7287 (3) 0.0241 (8) 0.26182 (11) 0.0176 (5)
H20A 0.7094 0.0859 0.2403 0.021*
C21A 0.7784 (3) −0.1906 (9) 0.26501 (11) 0.0176 (5)
H21A 0.7964 −0.2851 0.2460 0.021*
S1B 0.45484 (8) 0.2512 (2) 0.28505 (3) 0.0222 (3)
O1B 0.4761 (2) 0.3719 (5) 0.20988 (8) 0.0224 (7)
C1B 0.4998 (3) 0.6562 (8) 0.12502 (11) 0.0163 (8)
C2B 0.4294 (3) 0.8335 (9) 0.12167 (11) 0.0201 (9)
H2BA 0.4236 0.9538 0.1387 0.024*
C3B 0.3701 (3) 0.8295 (8) 0.09376 (12) 0.0218 (9)
H3BA 0.3256 0.9490 0.0917 0.026*
C4B 0.3764 (3) 0.6446 (9) 0.06824 (12) 0.0225 (9)
H4BA 0.3353 0.6422 0.0496 0.027*
C5B 0.4412 (3) 0.4706 (8) 0.07042 (11) 0.0198 (9)
H5BA 0.4435 0.3491 0.0534 0.024*
C6B 0.5066 (3) 0.4707 (8) 0.09854 (10) 0.0152 (8)
C7B 0.5750 (3) 0.2983 (8) 0.10025 (11) 0.0181 (9)
H7BA 0.5776 0.1762 0.0834 0.022*
C8B 0.6408 (3) 0.3054 (8) 0.12722 (11) 0.0174 (9)
C9B 0.7149 (3) 0.1350 (8) 0.12850 (12) 0.0217 (9)
H9BA 0.7190 0.0142 0.1115 0.026*
C10B 0.7797 (3) 0.1477 (9) 0.15438 (13) 0.0268 (10)
H10B 0.8272 0.0361 0.1548 0.032*
C11B 0.7745 (3) 0.3299 (9) 0.18054 (12) 0.0230 (10)
H11B 0.8194 0.3384 0.1978 0.028*
C12B 0.7041 (3) 0.4945 (9) 0.18086 (12) 0.0198 (9)
H12B 0.7016 0.6119 0.1984 0.024*
C13B 0.6343 (3) 0.4872 (8) 0.15435 (10) 0.0157 (8)
C14B 0.5611 (3) 0.6550 (8) 0.15328 (11) 0.0150 (8)
C15B 0.5492 (3) 0.8349 (8) 0.18238 (12) 0.0181 (9)
H15B 0.5587 0.9976 0.1770 0.022*
C16B 0.5261 (3) 0.7810 (8) 0.21535 (12) 0.0169 (9)
H16B 0.5247 0.9086 0.2314 0.020*
C17B 0.5024 (3) 0.5369 (8) 0.22900 (11) 0.0163 (8)
C18B 0.5063 (3) 0.5004 (8) 0.26765 (12) 0.0180 (8)
C19B 0.5461 (3) 0.6449 (9) 0.29485 (11) 0.0186 (5)
H19B 0.5774 0.7895 0.2911 0.022*
C20B 0.5319 (3) 0.5402 (8) 0.32761 (11) 0.0186 (5)
H20B 0.5538 0.6075 0.3484 0.022*
C21B 0.4834 (3) 0.3311 (9) 0.32663 (11) 0.0186 (5)
H21B 0.4675 0.2420 0.3465 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0264 (6) 0.0243 (7) 0.0251 (6) −0.0017 (5) 0.0031 (5) −0.0036 (5)
O1A 0.0312 (17) 0.0193 (17) 0.0194 (14) 0.0059 (14) 0.0025 (13) 0.0055 (14)
C1A 0.0149 (19) 0.016 (2) 0.0165 (19) 0.0051 (16) 0.0006 (15) −0.0002 (18)
C2A 0.022 (2) 0.019 (2) 0.0196 (19) 0.0016 (17) 0.0055 (16) 0.0007 (19)
C3A 0.021 (2) 0.025 (2) 0.030 (2) −0.0011 (18) −0.0034 (18) −0.006 (2)
C4A 0.024 (2) 0.030 (3) 0.024 (2) 0.0028 (19) −0.0063 (18) −0.008 (2)
C5A 0.025 (2) 0.027 (2) 0.0158 (18) 0.0093 (19) −0.0007 (17) −0.0011 (19)
C6A 0.021 (2) 0.021 (2) 0.0150 (18) 0.0088 (17) 0.0036 (16) −0.0006 (18)
C7A 0.023 (2) 0.021 (2) 0.0162 (19) 0.0065 (18) 0.0027 (16) 0.0061 (19)
C8A 0.0172 (19) 0.015 (2) 0.021 (2) 0.0031 (16) 0.0082 (16) −0.0008 (19)
C9A 0.026 (2) 0.017 (2) 0.029 (2) −0.0006 (17) 0.0103 (18) 0.002 (2)
C10A 0.026 (2) 0.023 (2) 0.030 (2) −0.0091 (19) 0.0108 (18) −0.006 (2)
C11A 0.018 (2) 0.036 (3) 0.025 (2) 0.0000 (19) −0.0004 (17) −0.010 (2)
C12A 0.024 (2) 0.020 (2) 0.0147 (19) 0.0038 (17) 0.0001 (16) 0.0000 (19)
C13A 0.019 (2) 0.019 (2) 0.0134 (18) 0.0019 (17) −0.0010 (15) −0.0045 (18)
C14A 0.023 (2) 0.013 (2) 0.0103 (18) 0.0027 (16) 0.0032 (15) −0.0018 (17)
C15A 0.027 (2) 0.013 (2) 0.016 (2) −0.0008 (16) 0.0002 (16) −0.0055 (19)
C16A 0.022 (2) 0.014 (2) 0.016 (2) 0.0029 (17) −0.0010 (18) 0.0068 (17)
C17A 0.0174 (19) 0.014 (2) 0.019 (2) −0.0061 (16) 0.0048 (15) 0.0018 (18)
C18A 0.0151 (18) 0.016 (2) 0.0156 (17) −0.0043 (15) 0.0055 (15) −0.0018 (17)
C19A 0.0125 (11) 0.0246 (13) 0.0158 (11) −0.0094 (10) 0.0020 (9) −0.0044 (11)
C20A 0.0125 (11) 0.0246 (13) 0.0158 (11) −0.0094 (10) 0.0020 (9) −0.0044 (11)
C21A 0.0125 (11) 0.0246 (13) 0.0158 (11) −0.0094 (10) 0.0020 (9) −0.0044 (11)
S1B 0.0233 (6) 0.0204 (6) 0.0230 (6) 0.0010 (4) 0.0023 (4) 0.0046 (5)
O1B 0.0306 (17) 0.0165 (16) 0.0200 (14) −0.0019 (13) 0.0020 (13) −0.0011 (14)
C1B 0.019 (2) 0.014 (2) 0.0161 (19) 0.0011 (16) 0.0065 (15) 0.0049 (18)
C2B 0.022 (2) 0.022 (2) 0.0166 (19) 0.0012 (18) 0.0014 (16) 0.0026 (18)
C3B 0.019 (2) 0.020 (2) 0.026 (2) 0.0002 (17) −0.0013 (17) 0.007 (2)
C4B 0.020 (2) 0.028 (3) 0.0185 (19) −0.0049 (19) −0.0027 (16) 0.001 (2)
C5B 0.024 (2) 0.021 (2) 0.0141 (18) −0.0022 (17) −0.0021 (16) 0.0000 (18)
C6B 0.0152 (19) 0.018 (2) 0.0122 (17) −0.0054 (15) 0.0011 (15) −0.0010 (17)
C7B 0.021 (2) 0.020 (2) 0.0133 (18) −0.0024 (17) 0.0062 (16) −0.0033 (18)
C8B 0.019 (2) 0.017 (2) 0.016 (2) 0.0006 (17) 0.0050 (16) 0.0041 (18)
C9B 0.020 (2) 0.019 (2) 0.026 (2) 0.0022 (17) 0.0098 (17) −0.001 (2)
C10B 0.024 (2) 0.026 (3) 0.031 (2) 0.007 (2) 0.0083 (19) 0.008 (2)
C11B 0.020 (2) 0.028 (3) 0.022 (2) 0.0023 (19) 0.0002 (17) 0.009 (2)
C12B 0.020 (2) 0.021 (2) 0.019 (2) 0.0012 (17) −0.0006 (16) 0.0012 (18)
C13B 0.0178 (19) 0.014 (2) 0.0151 (18) 0.0009 (16) 0.0059 (15) 0.0005 (18)
C14B 0.0174 (19) 0.012 (2) 0.0160 (18) −0.0009 (16) 0.0016 (15) 0.0015 (18)
C15B 0.0163 (19) 0.014 (2) 0.024 (2) −0.0019 (15) 0.0031 (16) −0.002 (2)
C16B 0.023 (2) 0.014 (2) 0.014 (2) −0.0007 (17) 0.0004 (18) −0.0044 (17)
C17B 0.0171 (19) 0.017 (2) 0.0147 (18) −0.0021 (16) 0.0040 (15) −0.0011 (18)
C18B 0.0157 (18) 0.017 (2) 0.021 (2) 0.0030 (16) 0.0051 (16) −0.0023 (18)
C19B 0.0145 (11) 0.0243 (14) 0.0171 (11) 0.0086 (10) 0.0017 (9) 0.0021 (11)
C20B 0.0145 (11) 0.0243 (14) 0.0171 (11) 0.0086 (10) 0.0017 (9) 0.0021 (11)
C21B 0.0145 (11) 0.0243 (14) 0.0171 (11) 0.0086 (10) 0.0017 (9) 0.0021 (11)

Geometric parameters (Å, °)

S1A—C21A 1.676 (4) S1B—C21B 1.692 (5)
S1A—C18A 1.703 (4) S1B—C18B 1.700 (5)
O1A—C17A 1.224 (5) O1B—C17B 1.226 (5)
C1A—C14A 1.422 (6) C1B—C14B 1.400 (6)
C1A—C2A 1.430 (6) C1B—C2B 1.427 (6)
C1A—C6A 1.442 (6) C1B—C6B 1.438 (6)
C2A—C3A 1.362 (6) C2B—C3B 1.372 (6)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.426 (7) C3B—C4B 1.409 (7)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.361 (7) C4B—C5B 1.353 (6)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.428 (6) C5B—C6B 1.435 (5)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.383 (6) C6B—C7B 1.383 (6)
C7A—C8A 1.398 (6) C7B—C8B 1.408 (6)
C7A—H7AA 0.9300 C7B—H7BA 0.9300
C8A—C9A 1.427 (6) C8B—C9B 1.437 (6)
C8A—C13A 1.433 (6) C8B—C13B 1.440 (6)
C9A—C10A 1.362 (7) C9B—C10B 1.368 (7)
C9A—H9AA 0.9300 C9B—H9BA 0.9300
C10A—C11A 1.415 (7) C10B—C11B 1.415 (7)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.354 (7) C11B—C12B 1.374 (6)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.437 (5) C12B—C13B 1.436 (5)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.401 (6) C13B—C14B 1.417 (6)
C14A—C15A 1.473 (6) C14B—C15B 1.495 (6)
C15A—C16A 1.360 (6) C15B—C16B 1.331 (6)
C15A—H15A 0.9300 C15B—H15B 0.9300
C16A—C17A 1.477 (6) C16B—C17B 1.483 (6)
C16A—H16A 0.9300 C16B—H16B 0.9300
C17A—C18A 1.476 (5) C17B—C18B 1.483 (6)
C18A—C19A 1.463 (6) C18B—C19B 1.430 (6)
C19A—C20A 1.421 (6) C19B—C20B 1.387 (6)
C19A—H19A 0.9300 C19B—H19B 0.9300
C20A—C21A 1.395 (6) C20B—C21B 1.355 (7)
C20A—H20A 0.9300 C20B—H20B 0.9300
C21A—H21A 0.9300 C21B—H21B 0.9300
C21A—S1A—C18A 93.4 (2) C21B—S1B—C18B 92.5 (2)
C14A—C1A—C2A 122.3 (4) C14B—C1B—C2B 122.4 (4)
C14A—C1A—C6A 119.3 (4) C14B—C1B—C6B 119.2 (4)
C2A—C1A—C6A 118.4 (4) C2B—C1B—C6B 118.3 (4)
C3A—C2A—C1A 121.5 (4) C3B—C2B—C1B 121.1 (4)
C3A—C2A—H2AA 119.3 C3B—C2B—H2BA 119.4
C1A—C2A—H2AA 119.3 C1B—C2B—H2BA 119.4
C2A—C3A—C4A 119.9 (4) C2B—C3B—C4B 120.1 (4)
C2A—C3A—H3AA 120.1 C2B—C3B—H3BA 120.0
C4A—C3A—H3AA 120.1 C4B—C3B—H3BA 120.0
C5A—C4A—C3A 120.7 (4) C5B—C4B—C3B 121.1 (4)
C5A—C4A—H4AA 119.6 C5B—C4B—H4BA 119.4
C3A—C4A—H4AA 119.6 C3B—C4B—H4BA 119.4
C4A—C5A—C6A 121.2 (4) C4B—C5B—C6B 121.0 (4)
C4A—C5A—H5AA 119.4 C4B—C5B—H5BA 119.5
C6A—C5A—H5AA 119.4 C6B—C5B—H5BA 119.5
C7A—C6A—C5A 122.8 (4) C7B—C6B—C5B 121.3 (4)
C7A—C6A—C1A 118.8 (4) C7B—C6B—C1B 120.4 (4)
C5A—C6A—C1A 118.4 (4) C5B—C6B—C1B 118.3 (4)
C6A—C7A—C8A 122.9 (4) C6B—C7B—C8B 120.8 (4)
C6A—C7A—H7AA 118.5 C6B—C7B—H7BA 119.6
C8A—C7A—H7AA 118.5 C8B—C7B—H7BA 119.6
C7A—C8A—C9A 121.9 (4) C7B—C8B—C9B 121.7 (4)
C7A—C8A—C13A 118.2 (4) C7B—C8B—C13B 119.6 (4)
C9A—C8A—C13A 119.9 (4) C9B—C8B—C13B 118.7 (4)
C10A—C9A—C8A 120.4 (4) C10B—C9B—C8B 121.1 (4)
C10A—C9A—H9AA 119.8 C10B—C9B—H9BA 119.5
C8A—C9A—H9AA 119.8 C8B—C9B—H9BA 119.5
C9A—C10A—C11A 120.5 (4) C9B—C10B—C11B 120.2 (4)
C9A—C10A—H10A 119.8 C9B—C10B—H10B 119.9
C11A—C10A—H10A 119.8 C11B—C10B—H10B 119.9
C12A—C11A—C10A 120.5 (4) C12B—C11B—C10B 121.0 (4)
C12A—C11A—H11A 119.8 C12B—C11B—H11B 119.5
C10A—C11A—H11A 119.8 C10B—C11B—H11B 119.5
C11A—C12A—C13A 121.9 (4) C11B—C12B—C13B 120.7 (4)
C11A—C12A—H12A 119.0 C11B—C12B—H12B 119.6
C13A—C12A—H12A 119.0 C13B—C12B—H12B 119.6
C14A—C13A—C8A 120.5 (4) C14B—C13B—C12B 122.8 (4)
C14A—C13A—C12A 122.7 (4) C14B—C13B—C8B 118.9 (4)
C8A—C13A—C12A 116.8 (4) C12B—C13B—C8B 118.3 (4)
C13A—C14A—C1A 120.0 (4) C1B—C14B—C13B 120.8 (4)
C13A—C14A—C15A 122.0 (4) C1B—C14B—C15B 119.2 (4)
C1A—C14A—C15A 117.9 (4) C13B—C14B—C15B 120.0 (4)
C16A—C15A—C14A 126.6 (4) C16B—C15B—C14B 125.3 (4)
C16A—C15A—H15A 116.7 C16B—C15B—H15B 117.4
C14A—C15A—H15A 116.7 C14B—C15B—H15B 117.4
C15A—C16A—C17A 125.0 (4) C15B—C16B—C17B 126.2 (4)
C15A—C16A—H16A 117.5 C15B—C16B—H16B 116.9
C17A—C16A—H16A 117.5 C17B—C16B—H16B 116.9
O1A—C17A—C18A 120.1 (4) O1B—C17B—C18B 119.9 (4)
O1A—C17A—C16A 123.4 (4) O1B—C17B—C16B 122.6 (4)
C18A—C17A—C16A 116.4 (4) C18B—C17B—C16B 117.4 (4)
C19A—C18A—C17A 130.8 (4) C19B—C18B—C17B 131.0 (4)
C19A—C18A—S1A 111.5 (3) C19B—C18B—S1B 110.5 (3)
C17A—C18A—S1A 117.7 (3) C17B—C18B—S1B 118.5 (3)
C20A—C19A—C18A 108.9 (4) C20B—C19B—C18B 110.8 (4)
C20A—C19A—H19A 125.6 C20B—C19B—H19B 124.6
C18A—C19A—H19A 125.6 C18B—C19B—H19B 124.6
C21A—C20A—C19A 113.8 (4) C21B—C20B—C19B 114.1 (4)
C21A—C20A—H20A 123.1 C21B—C20B—H20B 123.0
C19A—C20A—H20A 123.1 C19B—C20B—H20B 123.0
C20A—C21A—S1A 112.4 (3) C20B—C21B—S1B 112.1 (3)
C20A—C21A—H21A 123.8 C20B—C21B—H21B 123.9
S1A—C21A—H21A 123.8 S1B—C21B—H21B 123.9
C14A—C1A—C2A—C3A 179.9 (4) C14B—C1B—C2B—C3B −179.7 (4)
C6A—C1A—C2A—C3A −0.9 (6) C6B—C1B—C2B—C3B −0.7 (6)
C1A—C2A—C3A—C4A 1.8 (7) C1B—C2B—C3B—C4B 1.7 (7)
C2A—C3A—C4A—C5A −1.1 (7) C2B—C3B—C4B—C5B −0.9 (7)
C3A—C4A—C5A—C6A −0.4 (7) C3B—C4B—C5B—C6B −0.9 (7)
C4A—C5A—C6A—C7A −179.6 (4) C4B—C5B—C6B—C7B −177.7 (4)
C4A—C5A—C6A—C1A 1.2 (6) C4B—C5B—C6B—C1B 1.9 (6)
C14A—C1A—C6A—C7A −0.7 (6) C14B—C1B—C6B—C7B −2.4 (6)
C2A—C1A—C6A—C7A −179.8 (4) C2B—C1B—C6B—C7B 178.5 (4)
C14A—C1A—C6A—C5A 178.6 (4) C14B—C1B—C6B—C5B 178.0 (4)
C2A—C1A—C6A—C5A −0.6 (6) C2B—C1B—C6B—C5B −1.1 (6)
C5A—C6A—C7A—C8A 178.2 (4) C5B—C6B—C7B—C8B 177.6 (4)
C1A—C6A—C7A—C8A −2.6 (6) C1B—C6B—C7B—C8B −2.0 (6)
C6A—C7A—C8A—C9A −178.3 (4) C6B—C7B—C8B—C9B −177.0 (4)
C6A—C7A—C8A—C13A 1.7 (6) C6B—C7B—C8B—C13B 3.0 (6)
C7A—C8A—C9A—C10A 177.2 (4) C7B—C8B—C9B—C10B 178.4 (4)
C13A—C8A—C9A—C10A −2.7 (6) C13B—C8B—C9B—C10B −1.6 (6)
C8A—C9A—C10A—C11A 0.6 (7) C8B—C9B—C10B—C11B 0.1 (7)
C9A—C10A—C11A—C12A 1.8 (7) C9B—C10B—C11B—C12B 1.0 (7)
C10A—C11A—C12A—C13A −2.1 (7) C10B—C11B—C12B—C13B −0.6 (7)
C7A—C8A—C13A—C14A 2.6 (6) C11B—C12B—C13B—C14B −179.1 (4)
C9A—C8A—C13A—C14A −177.4 (4) C11B—C12B—C13B—C8B −0.8 (6)
C7A—C8A—C13A—C12A −177.5 (4) C7B—C8B—C13B—C14B 0.3 (6)
C9A—C8A—C13A—C12A 2.4 (6) C9B—C8B—C13B—C14B −179.7 (4)
C11A—C12A—C13A—C14A 179.8 (4) C7B—C8B—C13B—C12B −178.1 (4)
C11A—C12A—C13A—C8A −0.1 (6) C9B—C8B—C13B—C12B 1.9 (6)
C8A—C13A—C14A—C1A −5.9 (6) C2B—C1B—C14B—C13B −175.3 (4)
C12A—C13A—C14A—C1A 174.3 (4) C6B—C1B—C14B—C13B 5.7 (6)
C8A—C13A—C14A—C15A 178.3 (4) C2B—C1B—C14B—C15B 4.2 (6)
C12A—C13A—C14A—C15A −1.5 (6) C6B—C1B—C14B—C15B −174.8 (4)
C2A—C1A—C14A—C13A −176.0 (4) C12B—C13B—C14B—C1B 173.6 (4)
C6A—C1A—C14A—C13A 4.8 (6) C8B—C13B—C14B—C1B −4.7 (6)
C2A—C1A—C14A—C15A 0.0 (6) C12B—C13B—C14B—C15B −5.9 (6)
C6A—C1A—C14A—C15A −179.2 (4) C8B—C13B—C14B—C15B 175.9 (4)
C13A—C14A—C15A—C16A −68.5 (6) C1B—C14B—C15B—C16B 112.9 (5)
C1A—C14A—C15A—C16A 115.5 (5) C13B—C14B—C15B—C16B −67.7 (6)
C14A—C15A—C16A—C17A −3.7 (7) C14B—C15B—C16B—C17B −4.0 (7)
C15A—C16A—C17A—O1A −18.5 (7) C15B—C16B—C17B—O1B −21.8 (7)
C15A—C16A—C17A—C18A 164.3 (4) C15B—C16B—C17B—C18B 161.7 (4)
O1A—C17A—C18A—C19A 171.3 (4) O1B—C17B—C18B—C19B 169.3 (4)
C16A—C17A—C18A—C19A −11.4 (6) C16B—C17B—C18B—C19B −14.0 (7)
O1A—C17A—C18A—S1A −10.4 (5) O1B—C17B—C18B—S1B −11.8 (5)
C16A—C17A—C18A—S1A 166.9 (3) C16B—C17B—C18B—S1B 164.8 (3)
C21A—S1A—C18A—C19A −0.1 (3) C21B—S1B—C18B—C19B 0.3 (3)
C21A—S1A—C18A—C17A −178.7 (3) C21B—S1B—C18B—C17B −178.8 (3)
C17A—C18A—C19A—C20A 179.1 (4) C17B—C18B—C19B—C20B 179.2 (4)
S1A—C18A—C19A—C20A 0.7 (4) S1B—C18B—C19B—C20B 0.3 (4)
C18A—C19A—C20A—C21A −1.1 (5) C18B—C19B—C20B—C21B −1.0 (5)
C19A—C20A—C21A—S1A 1.0 (4) C19B—C20B—C21B—S1B 1.2 (5)
C18A—S1A—C21A—C20A −0.5 (3) C18B—S1B—C21B—C20B −0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3A—H3AA···Cg3i 0.93 2.99 3.679 (5) 132
C10A—H10A···Cg2ii 0.93 2.95 3.694 (5) 138
C10B—H10B···Cg5i 0.93 2.93 3.594 (5) 129
C15A—H15A···Cg3iii 0.93 2.76 3.550 (5) 143
C15B—H15B···Cg6iii 0.93 2.94 3.689 (5) 139
C19A—H19A···Cg4 0.93 2.72 3.486 (5) 140
C19B—H19B···Cg1iii 0.93 2.72 3.458 (5) 137

Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) x−1/2, −y−1/2, z; (iii) x, y+1, z.

Footnotes

1

This paper is dedicated to Her Majesty, Queen Sirikit of Thailand on the occasion of her 77th Birthday Anniversary which fell on August 12th, 2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2522).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [DOI] [PMC free article] [PubMed]
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Oliveira, E., Vicente, M., Valencia, L., Macías, A., Bértolo, E., Bastida, R. & Lodeiro, C. (2007). Inorg. Chim. Acta, 360, 2734–2743.
  6. Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett 62, 451–453.
  7. Saydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omay, S. B. (2003). Leuk. Res 27, 57–64. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009a). Acta Cryst. E65, o420–o421. [DOI] [PMC free article] [PubMed]
  11. Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009b). Acta Cryst. E65, o1575–o1576. [DOI] [PMC free article] [PubMed]
  12. Svetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13–26. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031900/tk2522sup1.cif

e-65-o2168-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031900/tk2522Isup2.hkl

e-65-o2168-Isup2.hkl (326.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES