Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2102. doi: 10.1107/S1600536809030748

4-[4-(Dimethyl­amino)benzyl­idene]-2,6-dimethyl­cyclo­hexa-2,5-dienone

Nathalie Hampel a, Dorothea Richter a, Armin R Ofial a, Herbert Mayr a, Peter Mayer a,*
PMCID: PMC2969876  PMID: 21577517

Abstract

The title compound, C17H19NO, crystallized with two mol­ecules per asymmetric unit. C—H⋯O hydrogen bonds lead to infinite chains along [100]. According to graph-set theory, the descriptor C 1 1(13)C 1 1(13) can be assigned.

Related literature

For a related structure, see: Kawai et al. (2004). For background to graph set analysis, see: Bernstein et al. (1995); Etter et al. (1990). For the preparation, see: Richter et al. (2009).graphic file with name e-65-o2102-scheme1.jpg

Experimental

Crystal data

  • C17H19NO

  • M r = 253.34

  • Monoclinic, Inline graphic

  • a = 14.5357 (3) Å

  • b = 7.2759 (2) Å

  • c = 27.5473 (5) Å

  • β = 104.6463 (14)°

  • V = 2818.74 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.24 × 0.20 × 0.19 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 18635 measured reflections

  • 5725 independent reflections

  • 3685 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.131

  • S = 1.02

  • 5725 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030748/fl2253sup1.cif

e-65-o2102-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030748/fl2253Isup2.hkl

e-65-o2102-Isup2.hkl (280.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O1i 0.98 2.51 3.456 (2) 163
C34—H34B⋯O2i 0.98 2.36 3.328 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

The asymmetric unit of (I) contains two complete molecules of the title compound. Figure 1 shows one of the two independent molecules.

A major difference between the two symmetrically independent molecules is found in the angle formed by the planes of the two C6-rings within a molecule. This angle is found to be 35.19 (7)° between the planes in one molecule but only 20.00 (7)° between the planes in the other molecule (Fig. 2). With a bulky naphthyl substituent at the C atom linking the two rings, an angle of 43.16 (6)° is observed [Kawai et al. (2004)].

The molecular packing, which is shown in Figure 3, is dominated by two C—H···O hydrogen bonds leading to infinite chains along [100]. Each of the chains is built up by 13 atoms and contains one donor atom and one acceptor atom. According to graph set theory [Bernstein et al. (1995), Etter et al. (1990)] the descriptor C11(13)C11(13) can be assigned. The strands are cross-linked by very weak C—H···C contacts with H···C distances of at least 2.79 Å (Table 1).

Experimental

The title compound was prepared under an atmosphere of dry N2 from (4-hydroxy-3,5-dimethylphenyl)[4-(dimethylamino)phenyl]methanol [Richter et al. (2009)] (200 mg, 0.737 mmol) that was dissolved in dry CH2Cl2 (60 ml) and cooled to 0 °C. Then etheral HBF4-solution (0.110 ml, 0.811 mmol) was added at 0 °C. After 5 min, NEt3 (0.133 ml, 0.958 mmol) was added. The cooling bath was removed and stirring was continued for 3 h before the mixture was washed with water (3 times). The organic layer was dried (MgSO4) and the solvent was removed under reduced pressure. Crystals were obtained by slow cooling of a warm solution of the title compound in acetonitrile. Yield: 149 mg (80%), mp 127–128 °C.

Refinement

The H atoms were positioned geometrically (C—H = 0.98 Å for CH3, 0.95 Å for CH) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C) for CH, Uiso(H) = 1.5Ueq(C) for CH3].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (one molecule out of two of the asymmetric unit), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2.

Fig. 2.

Schematic representation of the different orientations of the aromatic planes in the two molecules, viewed along the C–H bond of the linking group and parallel to the dienone ring planes. For clarity all atoms connected to the aromatic rings have been omitted.

Fig. 3.

Fig. 3.

The packing of the title compound, viewed along [010]. Dashed lines indicate hydrogen bonds of the type C—H···O. The solid, red bonds link the 13 atoms involved in one of the two different hydrogen bonds leading to chains along [100].

Crystal data

C17H19NO F(000) = 1088
Mr = 253.34 Dx = 1.194 (1) Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10514 reflections
a = 14.5357 (3) Å θ = 3.1–26.4°
b = 7.2759 (2) Å µ = 0.07 mm1
c = 27.5473 (5) Å T = 200 K
β = 104.6463 (14)° Block, red
V = 2818.74 (11) Å3 0.24 × 0.20 × 0.19 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 3685 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.051
MONTEL, graded multilayered X-ray optics θmax = 26.4°, θmin = 3.2°
Detector resolution: 9 pixels mm-1 h = −18→18
CCD; rotation images; thick slices, φ/ω scan k = −9→9
18635 measured reflections l = −33→34
5725 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 0.2713P] where P = (Fo2 + 2Fc2)/3
5725 reflections (Δ/σ)max = 0.001
351 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.31746 (8) 0.77657 (19) 0.46546 (5) 0.0626 (4)
N1 0.37909 (9) 0.7322 (2) 0.45672 (5) 0.0497 (4)
C1 −0.24976 (11) 0.7798 (2) 0.44563 (6) 0.0428 (4)
C2 −0.26523 (11) 0.7680 (2) 0.39087 (6) 0.0441 (4)
C3 −0.19006 (11) 0.7670 (2) 0.37098 (6) 0.0425 (4)
H3 −0.2014 0.7639 0.3355 0.051*
C4 −0.09286 (11) 0.7703 (2) 0.40056 (6) 0.0374 (4)
C5 −0.07886 (11) 0.7914 (2) 0.45418 (5) 0.0372 (4)
H5 −0.0157 0.7992 0.4747 0.045*
C6 −0.15154 (11) 0.8003 (2) 0.47623 (5) 0.0372 (4)
C7 −0.36678 (12) 0.7568 (3) 0.35963 (7) 0.0621 (5)
H7A −0.3675 0.7544 0.3240 0.093*
H7B −0.4022 0.8642 0.3664 0.093*
H7C −0.3964 0.6446 0.3682 0.093*
C8 −0.13802 (12) 0.8369 (2) 0.53118 (6) 0.0477 (4)
H8A −0.0699 0.8458 0.5475 0.072*
H8B −0.1660 0.7362 0.5463 0.072*
H8C −0.1693 0.9527 0.5357 0.072*
C9 −0.02032 (11) 0.7623 (2) 0.37695 (6) 0.0394 (4)
H9 −0.0399 0.7699 0.3414 0.047*
C10 0.08090 (10) 0.7442 (2) 0.39752 (5) 0.0350 (4)
C11 0.14350 (11) 0.8184 (2) 0.37151 (5) 0.0395 (4)
H11 0.1179 0.8716 0.3394 0.047*
C12 0.24043 (11) 0.8172 (2) 0.39054 (6) 0.0413 (4)
H12 0.2798 0.8735 0.3720 0.050*
C13 0.28220 (11) 0.7344 (2) 0.43683 (6) 0.0385 (4)
C14 0.22023 (11) 0.6473 (2) 0.46155 (5) 0.0395 (4)
H14 0.2461 0.5826 0.4919 0.047*
C15 0.12351 (11) 0.6539 (2) 0.44275 (5) 0.0370 (4)
H15 0.0840 0.5956 0.4608 0.044*
C16 0.41687 (13) 0.6822 (3) 0.50911 (7) 0.0713 (6)
H16A 0.3946 0.7704 0.5305 0.107*
H16B 0.4865 0.6838 0.5173 0.107*
H16C 0.3949 0.5586 0.5149 0.107*
C17 0.43927 (13) 0.8433 (3) 0.43384 (8) 0.0752 (6)
H17A 0.4262 0.8142 0.3980 0.113*
H17B 0.5061 0.8173 0.4500 0.113*
H17C 0.4262 0.9737 0.4380 0.113*
O2 −0.37910 (8) 0.25472 (19) 0.34392 (5) 0.0634 (4)
N2 0.33071 (9) 0.24688 (19) 0.33231 (5) 0.0443 (4)
C18 −0.30784 (12) 0.2279 (2) 0.32776 (6) 0.0444 (4)
C19 −0.31707 (11) 0.1739 (2) 0.27539 (6) 0.0410 (4)
C20 −0.23808 (10) 0.1486 (2) 0.25927 (6) 0.0386 (4)
H20 −0.2453 0.1116 0.2254 0.046*
C21 −0.14294 (10) 0.1744 (2) 0.29038 (5) 0.0348 (4)
C22 −0.13547 (11) 0.2196 (2) 0.34218 (6) 0.0387 (4)
H22 −0.0739 0.2329 0.3641 0.046*
C23 −0.21173 (11) 0.2438 (2) 0.36091 (6) 0.0404 (4)
C24 −0.41593 (11) 0.1501 (3) 0.24209 (7) 0.0547 (5)
H24A −0.4121 0.1181 0.2081 0.082*
H24B −0.4515 0.2651 0.2411 0.082*
H24C −0.4485 0.0516 0.2554 0.082*
C25 −0.20350 (13) 0.2812 (3) 0.41543 (6) 0.0535 (5)
H25A −0.1363 0.2953 0.4331 0.080*
H25B −0.2309 0.1783 0.4300 0.080*
H25C −0.2379 0.3944 0.4188 0.080*
C26 −0.06843 (10) 0.1560 (2) 0.26859 (5) 0.0348 (4)
H26 −0.0867 0.1124 0.2350 0.042*
C27 0.03223 (10) 0.1899 (2) 0.28665 (5) 0.0322 (4)
C28 0.09255 (10) 0.1161 (2) 0.25908 (5) 0.0344 (4)
H28 0.0648 0.0509 0.2291 0.041*
C29 0.18928 (10) 0.1334 (2) 0.27339 (5) 0.0356 (4)
H29 0.2268 0.0777 0.2538 0.043*
C30 0.23412 (10) 0.2326 (2) 0.31684 (5) 0.0337 (4)
C31 0.17424 (10) 0.3170 (2) 0.34342 (5) 0.0352 (4)
H31 0.2015 0.3904 0.3720 0.042*
C32 0.07772 (10) 0.2950 (2) 0.32885 (5) 0.0340 (4)
H32 0.0399 0.3529 0.3479 0.041*
C33 0.37588 (11) 0.3514 (3) 0.37678 (6) 0.0547 (5)
H33A 0.3545 0.4795 0.3724 0.082*
H33B 0.4451 0.3468 0.3820 0.082*
H33C 0.3586 0.2987 0.4060 0.082*
C34 0.39029 (11) 0.1576 (3) 0.30456 (7) 0.0613 (5)
H34A 0.3789 0.0247 0.3038 0.092*
H34B 0.4572 0.1823 0.3209 0.092*
H34C 0.3751 0.2051 0.2702 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0423 (7) 0.0853 (11) 0.0637 (8) −0.0013 (7) 0.0201 (6) 0.0060 (7)
N1 0.0368 (8) 0.0599 (10) 0.0510 (9) −0.0005 (7) 0.0087 (7) −0.0015 (7)
C1 0.0380 (10) 0.0389 (10) 0.0521 (10) 0.0030 (7) 0.0124 (8) 0.0058 (8)
C2 0.0385 (10) 0.0414 (11) 0.0488 (10) 0.0007 (8) 0.0045 (8) 0.0039 (8)
C3 0.0431 (10) 0.0449 (11) 0.0361 (9) 0.0003 (8) 0.0036 (7) 0.0007 (7)
C4 0.0378 (9) 0.0333 (9) 0.0386 (9) 0.0011 (7) 0.0053 (7) −0.0010 (7)
C5 0.0364 (9) 0.0357 (10) 0.0375 (9) 0.0031 (7) 0.0055 (7) −0.0011 (7)
C6 0.0435 (10) 0.0293 (9) 0.0387 (9) 0.0022 (7) 0.0099 (7) 0.0004 (7)
C7 0.0396 (10) 0.0792 (15) 0.0615 (12) −0.0030 (10) 0.0018 (8) 0.0074 (10)
C8 0.0514 (11) 0.0480 (11) 0.0455 (10) 0.0000 (8) 0.0158 (8) −0.0053 (8)
C9 0.0430 (10) 0.0396 (10) 0.0343 (8) 0.0027 (7) 0.0075 (7) −0.0001 (7)
C10 0.0376 (9) 0.0342 (9) 0.0333 (8) 0.0021 (7) 0.0093 (7) −0.0037 (7)
C11 0.0481 (11) 0.0388 (10) 0.0329 (8) 0.0061 (8) 0.0129 (7) 0.0021 (7)
C12 0.0440 (10) 0.0403 (10) 0.0444 (9) 0.0017 (8) 0.0199 (8) 0.0006 (8)
C13 0.0370 (9) 0.0378 (10) 0.0410 (9) 0.0029 (7) 0.0108 (7) −0.0065 (7)
C14 0.0435 (10) 0.0419 (10) 0.0330 (8) 0.0071 (8) 0.0096 (7) 0.0011 (7)
C15 0.0418 (10) 0.0361 (10) 0.0356 (8) 0.0032 (7) 0.0144 (7) 0.0003 (7)
C16 0.0454 (11) 0.1020 (18) 0.0574 (12) 0.0055 (11) −0.0036 (9) −0.0013 (11)
C17 0.0449 (12) 0.0843 (17) 0.0953 (16) −0.0098 (11) 0.0155 (11) 0.0064 (13)
O2 0.0438 (7) 0.0777 (10) 0.0766 (9) −0.0019 (6) 0.0296 (7) −0.0172 (7)
N2 0.0300 (8) 0.0539 (10) 0.0487 (8) −0.0022 (6) 0.0097 (6) −0.0082 (7)
C18 0.0397 (10) 0.0411 (11) 0.0572 (11) −0.0015 (8) 0.0210 (8) −0.0019 (8)
C19 0.0327 (9) 0.0379 (10) 0.0519 (10) −0.0006 (7) 0.0099 (7) −0.0001 (8)
C20 0.0365 (9) 0.0383 (10) 0.0398 (9) −0.0006 (7) 0.0073 (7) −0.0029 (7)
C21 0.0339 (9) 0.0324 (9) 0.0375 (8) 0.0014 (7) 0.0081 (7) 0.0002 (7)
C22 0.0337 (9) 0.0408 (10) 0.0400 (9) −0.0033 (7) 0.0066 (7) 0.0003 (7)
C23 0.0436 (10) 0.0369 (10) 0.0437 (9) −0.0036 (7) 0.0165 (8) −0.0023 (7)
C24 0.0359 (10) 0.0649 (13) 0.0630 (11) −0.0020 (9) 0.0117 (8) −0.0051 (9)
C25 0.0613 (12) 0.0562 (13) 0.0482 (10) −0.0044 (9) 0.0237 (9) −0.0043 (9)
C26 0.0331 (9) 0.0354 (9) 0.0345 (8) 0.0013 (7) 0.0060 (7) −0.0011 (7)
C27 0.0324 (9) 0.0325 (9) 0.0314 (8) 0.0024 (7) 0.0074 (6) 0.0025 (6)
C28 0.0370 (9) 0.0363 (9) 0.0296 (8) −0.0012 (7) 0.0080 (6) 0.0004 (6)
C29 0.0365 (9) 0.0372 (10) 0.0366 (8) 0.0007 (7) 0.0159 (7) −0.0013 (7)
C30 0.0284 (8) 0.0368 (10) 0.0360 (8) 0.0004 (7) 0.0084 (6) 0.0042 (7)
C31 0.0357 (9) 0.0363 (10) 0.0327 (8) −0.0024 (7) 0.0070 (7) −0.0022 (7)
C32 0.0335 (9) 0.0352 (9) 0.0342 (8) 0.0021 (7) 0.0104 (7) −0.0008 (7)
C33 0.0362 (10) 0.0668 (14) 0.0552 (10) −0.0054 (9) 0.0006 (8) −0.0090 (9)
C34 0.0337 (10) 0.0803 (15) 0.0735 (13) −0.0009 (9) 0.0201 (9) −0.0154 (11)

Geometric parameters (Å, °)

O1—C1 1.2406 (18) O2—C18 1.2418 (18)
N1—C13 1.376 (2) N2—C30 1.3642 (18)
N1—C17 1.447 (2) N2—C34 1.446 (2)
N1—C16 1.455 (2) N2—C33 1.450 (2)
C1—C2 1.470 (2) C18—C23 1.468 (2)
C1—C6 1.471 (2) C18—C19 1.468 (2)
C2—C3 1.341 (2) C19—C20 1.344 (2)
C2—C7 1.511 (2) C19—C24 1.507 (2)
C3—C4 1.442 (2) C20—C21 1.443 (2)
C3—H3 0.9500 C20—H20 0.9500
C4—C9 1.373 (2) C21—C26 1.371 (2)
C4—C5 1.447 (2) C21—C22 1.441 (2)
C5—C6 1.347 (2) C22—C23 1.347 (2)
C5—H5 0.9500 C22—H22 0.9500
C6—C8 1.500 (2) C23—C25 1.501 (2)
C7—H7A 0.9800 C24—H24A 0.9800
C7—H7B 0.9800 C24—H24B 0.9800
C7—H7C 0.9800 C24—H24C 0.9800
C8—H8A 0.9800 C25—H25A 0.9800
C8—H8B 0.9800 C25—H25B 0.9800
C8—H8C 0.9800 C25—H25C 0.9800
C9—C10 1.443 (2) C26—C27 1.4426 (19)
C9—H9 0.9500 C26—H26 0.9500
C10—C11 1.401 (2) C27—C28 1.404 (2)
C10—C15 1.406 (2) C27—C32 1.409 (2)
C11—C12 1.374 (2) C28—C29 1.367 (2)
C11—H11 0.9500 C28—H28 0.9500
C12—C13 1.402 (2) C29—C30 1.409 (2)
C12—H12 0.9500 C29—H29 0.9500
C13—C14 1.410 (2) C30—C31 1.412 (2)
C14—C15 1.371 (2) C31—C32 1.368 (2)
C14—H14 0.9500 C31—H31 0.9500
C15—H15 0.9500 C32—H32 0.9500
C16—H16A 0.9800 C33—H33A 0.9800
C16—H16B 0.9800 C33—H33B 0.9800
C16—H16C 0.9800 C33—H33C 0.9800
C17—H17A 0.9800 C34—H34A 0.9800
C17—H17B 0.9800 C34—H34B 0.9800
C17—H17C 0.9800 C34—H34C 0.9800
C13—N1—C17 119.38 (14) C30—N2—C34 120.48 (13)
C13—N1—C16 119.30 (14) C30—N2—C33 120.93 (13)
C17—N1—C16 116.99 (14) C34—N2—C33 118.59 (13)
O1—C1—C2 121.20 (15) O2—C18—C23 120.91 (15)
O1—C1—C6 120.85 (15) O2—C18—C19 121.12 (15)
C2—C1—C6 117.93 (14) C23—C18—C19 117.94 (13)
C3—C2—C1 119.39 (14) C20—C19—C18 119.19 (14)
C3—C2—C7 123.14 (16) C20—C19—C24 123.09 (15)
C1—C2—C7 117.47 (15) C18—C19—C24 117.72 (14)
C2—C3—C4 123.54 (15) C19—C20—C21 123.81 (14)
C2—C3—H3 118.2 C19—C20—H20 118.1
C4—C3—H3 118.2 C21—C20—H20 118.1
C9—C4—C3 119.46 (14) C26—C21—C22 125.83 (13)
C9—C4—C5 124.14 (14) C26—C21—C20 118.16 (13)
C3—C4—C5 116.32 (14) C22—C21—C20 116.00 (13)
C6—C5—C4 122.78 (14) C23—C22—C21 123.07 (14)
C6—C5—H5 118.6 C23—C22—H22 118.5
C4—C5—H5 118.6 C21—C22—H22 118.5
C5—C6—C1 119.69 (14) C22—C23—C18 119.83 (14)
C5—C6—C8 123.10 (14) C22—C23—C25 122.80 (15)
C1—C6—C8 117.18 (14) C18—C23—C25 117.34 (14)
C2—C7—H7A 109.5 C19—C24—H24A 109.5
C2—C7—H7B 109.5 C19—C24—H24B 109.5
H7A—C7—H7B 109.5 H24A—C24—H24B 109.5
C2—C7—H7C 109.5 C19—C24—H24C 109.5
H7A—C7—H7C 109.5 H24A—C24—H24C 109.5
H7B—C7—H7C 109.5 H24B—C24—H24C 109.5
C6—C8—H8A 109.5 C23—C25—H25A 109.5
C6—C8—H8B 109.5 C23—C25—H25B 109.5
H8A—C8—H8B 109.5 H25A—C25—H25B 109.5
C6—C8—H8C 109.5 C23—C25—H25C 109.5
H8A—C8—H8C 109.5 H25A—C25—H25C 109.5
H8B—C8—H8C 109.5 H25B—C25—H25C 109.5
C4—C9—C10 130.31 (14) C21—C26—C27 132.61 (14)
C4—C9—H9 114.8 C21—C26—H26 113.7
C10—C9—H9 114.8 C27—C26—H26 113.7
C11—C10—C15 115.83 (13) C28—C27—C32 115.29 (13)
C11—C10—C9 119.57 (13) C28—C27—C26 117.75 (13)
C15—C10—C9 124.60 (14) C32—C27—C26 126.93 (13)
C12—C11—C10 122.60 (14) C29—C28—C27 123.11 (13)
C12—C11—H11 118.7 C29—C28—H28 118.4
C10—C11—H11 118.7 C27—C28—H28 118.4
C11—C12—C13 121.08 (14) C28—C29—C30 120.92 (13)
C11—C12—H12 119.5 C28—C29—H29 119.5
C13—C12—H12 119.5 C30—C29—H29 119.5
N1—C13—C12 122.09 (14) N2—C30—C29 121.54 (13)
N1—C13—C14 121.14 (14) N2—C30—C31 121.71 (13)
C12—C13—C14 116.74 (14) C29—C30—C31 116.75 (13)
C15—C14—C13 121.43 (14) C32—C31—C30 121.21 (13)
C15—C14—H14 119.3 C32—C31—H31 119.4
C13—C14—H14 119.3 C30—C31—H31 119.4
C14—C15—C10 122.08 (14) C31—C32—C27 122.56 (13)
C14—C15—H15 119.0 C31—C32—H32 118.7
C10—C15—H15 119.0 C27—C32—H32 118.7
N1—C16—H16A 109.5 N2—C33—H33A 109.5
N1—C16—H16B 109.5 N2—C33—H33B 109.5
H16A—C16—H16B 109.5 H33A—C33—H33B 109.5
N1—C16—H16C 109.5 N2—C33—H33C 109.5
H16A—C16—H16C 109.5 H33A—C33—H33C 109.5
H16B—C16—H16C 109.5 H33B—C33—H33C 109.5
N1—C17—H17A 109.5 N2—C34—H34A 109.5
N1—C17—H17B 109.5 N2—C34—H34B 109.5
H17A—C17—H17B 109.5 H34A—C34—H34B 109.5
N1—C17—H17C 109.5 N2—C34—H34C 109.5
H17A—C17—H17C 109.5 H34A—C34—H34C 109.5
H17B—C17—H17C 109.5 H34B—C34—H34C 109.5
O1—C1—C2—C3 −178.22 (16) O2—C18—C19—C20 179.15 (16)
C6—C1—C2—C3 3.3 (2) C23—C18—C19—C20 −2.7 (2)
O1—C1—C2—C7 1.5 (2) O2—C18—C19—C24 −0.6 (2)
C6—C1—C2—C7 −176.94 (15) C23—C18—C19—C24 177.49 (15)
C1—C2—C3—C4 2.3 (3) C18—C19—C20—C21 −1.1 (2)
C7—C2—C3—C4 −177.45 (16) C24—C19—C20—C21 178.72 (15)
C2—C3—C4—C9 177.69 (16) C19—C20—C21—C26 −175.74 (15)
C2—C3—C4—C5 −5.3 (2) C19—C20—C21—C22 3.6 (2)
C9—C4—C5—C6 179.44 (15) C26—C21—C22—C23 176.92 (16)
C3—C4—C5—C6 2.6 (2) C20—C21—C22—C23 −2.4 (2)
C4—C5—C6—C1 2.9 (2) C21—C22—C23—C18 −1.3 (2)
C4—C5—C6—C8 −175.02 (15) C21—C22—C23—C25 176.74 (16)
O1—C1—C6—C5 175.68 (15) O2—C18—C23—C22 −178.00 (16)
C2—C1—C6—C5 −5.8 (2) C19—C18—C23—C22 3.9 (2)
O1—C1—C6—C8 −6.3 (2) O2—C18—C23—C25 3.9 (2)
C2—C1—C6—C8 172.17 (15) C19—C18—C23—C25 −174.24 (15)
C3—C4—C9—C10 −172.71 (15) C22—C21—C26—C27 −6.6 (3)
C5—C4—C9—C10 10.5 (3) C20—C21—C26—C27 172.68 (15)
C4—C9—C10—C11 −151.45 (17) C21—C26—C27—C28 165.06 (16)
C4—C9—C10—C15 29.2 (3) C21—C26—C27—C32 −16.9 (3)
C15—C10—C11—C12 −5.2 (2) C32—C27—C28—C29 4.1 (2)
C9—C10—C11—C12 175.42 (14) C26—C27—C28—C29 −177.62 (13)
C10—C11—C12—C13 2.4 (2) C27—C28—C29—C30 −1.7 (2)
C17—N1—C13—C12 10.3 (2) C34—N2—C30—C29 −0.8 (2)
C16—N1—C13—C12 166.30 (17) C33—N2—C30—C29 179.24 (15)
C17—N1—C13—C14 −171.83 (16) C34—N2—C30—C31 179.45 (15)
C16—N1—C13—C14 −15.9 (2) C33—N2—C30—C31 −0.5 (2)
C11—C12—C13—N1 −179.73 (15) C28—C29—C30—N2 178.22 (14)
C11—C12—C13—C14 2.3 (2) C28—C29—C30—C31 −2.0 (2)
N1—C13—C14—C15 177.92 (14) N2—C30—C31—C32 −177.05 (14)
C12—C13—C14—C15 −4.1 (2) C29—C30—C31—C32 3.2 (2)
C13—C14—C15—C10 1.3 (2) C30—C31—C32—C27 −0.7 (2)
C11—C10—C15—C14 3.3 (2) C28—C27—C32—C31 −2.9 (2)
C9—C10—C15—C14 −177.29 (14) C26—C27—C32—C31 179.02 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17B···O1i 0.98 2.51 3.456 (2) 163
C34—H34B···O2i 0.98 2.36 3.328 (2) 169

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2253).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hooft, R. W. W. (2004). COLLECT Bruker–Nonius BV, Delft, The Netherlands.
  6. Kawai, H., Nagasu, T., Takeda, T., Fujiwara, K., Tsuji, T., Ohkita, M., Nishida, J. & Suzuki, T. (2004). Tetrahedron Lett.45, 4553–4558.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Richter, D., Hampel, N., Singer, T., Ofial, A. R. & Mayr, H. (2009). Eur. J. Org. Chem. pp. 3203–3211.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030748/fl2253sup1.cif

e-65-o2102-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030748/fl2253Isup2.hkl

e-65-o2102-Isup2.hkl (280.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES