Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):o2150. doi: 10.1107/S160053680903116X

trans-1,2-Bis(3,5-dimethoxy­phen­yl)ethene

Stefanie Ritter a, Jörg-M Neudörfl a, Janna Velder a, Hans-Günther Schmalz a,*
PMCID: PMC2969882  PMID: 21577559

Abstract

The title compound, C18H20O4, was prepared in high yield from 3,5-dimethoxy­styrene via a Ru-catalysed homo-olefin metathesis. Exclusive formation of the E-configurated isomer was observed. Inter­estingly, one symmetric unit contains two mol­ecules adopting an s-syn-anti and and an all-s-anti conformation.

Related literature

For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006). Alternative methodologies for the synthesis of ­oxy-function­alized stilbenes using Wittig-type olefinations or Heck couplings have been described by Kim et al. (2002), Lion et al. (2005), Botella & Nayera (2004) and Reetz et al. (1998). For the bioactivity of various stilbenes with a focus on their anti­cancer activity, see: Aggarwal et al. (2004); Wolter & Stein (2002); Fremont (2000); Jang et al. (1997); Wieder et al. (2001). For related structures and syntheses see: Yin et al. (2002); Uda et al. (2002).graphic file with name e-65-o2150-scheme1.jpg

Experimental

Crystal data

  • C18H20O4

  • M r = 300.34

  • Monoclinic, Inline graphic

  • a = 7.1954 (3) Å

  • b = 9.4203 (4) Å

  • c = 22.6762 (5) Å

  • β = 93.783 (2)°

  • V = 1533.71 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 7687 measured reflections

  • 3320 independent reflections

  • 2142 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.150

  • S = 1.03

  • 3320 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903116X/hg2547sup1.cif

e-65-o2150-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903116X/hg2547Isup2.hkl

e-65-o2150-Isup2.hkl (162.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent years, polyhydroxylated stilbenes such as resveratrol have gained a tremendous importance especially due to their potential for the prevention and therapy of cancer (Aggarwal et al. (2004), Wolter et al. (2002), Fremont (2000), Jang et al. (1997)). In the course of our own research in the field of bioactive stilbenes (Wieder et al. (2001)) we were able to develop a highly efficient synthetic route towards symmetrically as well as unsymmetrically substituted E-stilbenes applying a Ru-catalyzed metathesis strategy (Velder et al. (2006)). Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998). One of the compounds prepared was the title compound trans-1,2-bis-(3,5-dimethoxyphenyl)ethene. The asymmetric unit contains two molecules, A and B, both of which exhibit a center of symmetry (figure 1). The 3,5-dimethoxy groups of molecule B all adopt a s-anti configuration, whereas in molecule A, a s-syn as well as a s-anti conformation is found on both sides. Zhang and co-workers reported the same observation on a related structure (Yin et al., 2002). The torsion angles between the benzene ring planes in molecule A are 0.2 (3)° (C1a—C1—C2—C3), which gives the molecule a planar shape. Molecule B, in contrast, adopts a slightly twisted conformation with a torsion angle of 7.0 (2)° (C10b—C10—C11—C12). The molecules form slightly twisted pseudo-layers which are arranged along the b axis (Fig. 2). In figure 3, two of those pseudo-layers are shown from the top view (with the front layer being displayed in dark and the retral layer in light green).

Experimental

In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, 2 mol %) was weighted into a 25 ml Schlenk tube, which was then sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3,5-dimethoxy-styrene (1 mmol) in CH2Cl2 (10 ml) was then added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by flash chromatography (SiO2, cyclohexane/ ethyl acetate = 10:1) to give 138 mg (0.46 mmol; 92%) of the homo metathesis product (1). mp. 142 °C (Uda et al., 2002: 141–144 °C). 1H NMR (300 MHz, CDCl3): δ = 3.81 (s, 6H, OCH3), 6.4 (t, 1H, J = 2.1 Hz,H-4), 6.67 (d, 2H, J = 2.1 Hz, H-2, H-6), 7.00 (s, 1H, H-7); 13C NMR (75 MHz, CDCl3): δ = 55.4 (OCH3), 100.2 (C-4), 104.7 (C-2, C-6), 129.2 (C-7), 139.2 (C-1), 161.0 (C-3, C-5); HRMS, calcd for C18H20O4 (M+) 300.1361, found 300.136.

Figures

Fig. 1.

Fig. 1.

A view of (1). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the unit cell along the b axis.

Fig. 3.

Fig. 3.

Top view of two pseudo layers.

Crystal data

C18H20O4 F(000) = 640
Mr = 300.34 Dx = 1.301 Mg m3
Monoclinic, P21/c Melting point: 142 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.1954 (3) Å Cell parameters from 7687 reflections
b = 9.4203 (4) Å θ = 2.3–27.0°
c = 22.6762 (5) Å µ = 0.09 mm1
β = 93.783 (2)° T = 100 K
V = 1533.71 (10) Å3 Needle, colourless
Z = 4 0.4 × 0.2 × 0.2 mm

Data collection

Nonius KappaCCD diffractometer 2142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.041
graphite θmax = 27.0°, θmin = 2.3°
φ and ω scans h = −6→9
7687 measured reflections k = −12→10
3320 independent reflections l = −25→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.274P] where P = (Fo2 + 2Fc2)/3
3320 reflections (Δ/σ)max < 0.001
207 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The coordinates of the hydrogenatoms are constrained, and the U values of the H atoms are constrained relative to the Ueq of the atom the hydrogen binds to (1.2 for CH and CH2, 1.5 for CH3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16550 (18) 0.11969 (13) 0.29039 (5) 0.0322 (4)
O2 0.11990 (18) 0.52539 (13) 0.41414 (6) 0.0346 (4)
C1 0.0096 (2) 0.07001 (18) 0.49846 (8) 0.0272 (4)
H1 −0.0099 0.1220 0.5334 0.033*
C2 0.0575 (2) 0.15286 (19) 0.44674 (8) 0.0256 (4)
C3 0.0903 (2) 0.0879 (2) 0.39261 (8) 0.0268 (4)
H3 0.0831 −0.0123 0.3885 0.032*
C4 0.1329 (2) 0.17169 (19) 0.34549 (8) 0.0259 (4)
C5 0.1450 (2) 0.31913 (19) 0.35017 (8) 0.0275 (4)
H5 0.1748 0.3753 0.3173 0.033*
C6 0.1123 (2) 0.38210 (19) 0.40394 (8) 0.0267 (4)
C7 0.0691 (2) 0.2989 (2) 0.45200 (8) 0.0274 (4)
H7 0.0475 0.3428 0.4886 0.033*
C8 0.1666 (3) −0.03060 (19) 0.28252 (8) 0.0312 (5)
H8A 0.2575 −0.0734 0.3113 0.047*
H8B 0.2006 −0.0530 0.2424 0.047*
H8C 0.0424 −0.0687 0.2884 0.047*
C9 0.1455 (3) 0.6156 (2) 0.36467 (9) 0.0359 (5)
H9A 0.2645 0.5933 0.3482 0.054*
H9B 0.1457 0.7149 0.3775 0.054*
H9C 0.0437 0.6003 0.3344 0.054*
O3 0.31579 (18) 0.49045 (14) 0.21349 (5) 0.0360 (4)
O4 0.33384 (18) 0.03486 (14) 0.13362 (6) 0.0392 (4)
C10 0.4952 (2) 0.43244 (19) 0.00794 (8) 0.0299 (4)
H10 0.5284 0.3637 −0.0202 0.040 (6)*
C11 0.4382 (2) 0.3787 (2) 0.06489 (8) 0.0273 (4)
C12 0.4051 (2) 0.4693 (2) 0.11208 (8) 0.0289 (4)
H12 0.4206 0.5689 0.1083 0.020 (5)*
C13 0.3493 (2) 0.4114 (2) 0.16439 (8) 0.0288 (5)
C14 0.3246 (2) 0.2665 (2) 0.17034 (8) 0.0303 (5)
H14 0.2849 0.2285 0.2062 0.047 (6)*
C15 0.3581 (2) 0.1774 (2) 0.12378 (8) 0.0296 (5)
C16 0.4155 (2) 0.2328 (2) 0.07095 (8) 0.0293 (5)
H16 0.4391 0.1711 0.0392 0.030 (5)*
C17 0.3394 (3) 0.6410 (2) 0.20992 (9) 0.0373 (5)
H17A 0.4679 0.6625 0.2011 0.056*
H17B 0.3128 0.6845 0.2477 0.056*
H17C 0.2536 0.6792 0.1785 0.056*
C18 0.3671 (3) −0.0593 (2) 0.08589 (9) 0.0386 (5)
H18A 0.2853 −0.0340 0.0512 0.058*
H18B 0.3415 −0.1571 0.0976 0.058*
H18C 0.4974 −0.0514 0.0761 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0478 (8) 0.0283 (7) 0.0216 (7) −0.0022 (6) 0.0118 (6) 0.0006 (6)
O2 0.0487 (8) 0.0268 (8) 0.0291 (8) −0.0033 (6) 0.0080 (6) 0.0032 (6)
C1 0.0288 (9) 0.0332 (10) 0.0200 (9) 0.0004 (8) 0.0046 (7) −0.0001 (8)
C2 0.0249 (9) 0.0291 (11) 0.0227 (10) 0.0000 (8) 0.0014 (7) 0.0040 (8)
C3 0.0280 (10) 0.0261 (10) 0.0265 (11) −0.0010 (7) 0.0028 (8) 0.0025 (8)
C4 0.0256 (9) 0.0307 (11) 0.0216 (10) 0.0010 (8) 0.0034 (7) 0.0005 (8)
C5 0.0291 (10) 0.0288 (11) 0.0252 (10) −0.0006 (8) 0.0053 (8) 0.0073 (8)
C6 0.0269 (10) 0.0249 (10) 0.0281 (11) −0.0020 (8) 0.0008 (8) 0.0025 (8)
C7 0.0294 (10) 0.0295 (10) 0.0235 (10) −0.0007 (8) 0.0040 (8) 0.0012 (8)
C8 0.0372 (11) 0.0303 (11) 0.0266 (11) −0.0027 (8) 0.0056 (8) −0.0018 (8)
C9 0.0444 (12) 0.0292 (11) 0.0342 (12) −0.0031 (9) 0.0046 (9) 0.0078 (9)
O3 0.0443 (8) 0.0397 (8) 0.0251 (8) −0.0033 (6) 0.0097 (6) 0.0002 (6)
O4 0.0489 (9) 0.0328 (8) 0.0370 (8) −0.0008 (6) 0.0108 (7) 0.0093 (6)
C10 0.0324 (10) 0.0344 (10) 0.0232 (10) −0.0013 (9) 0.0044 (8) 0.0020 (9)
C11 0.0248 (9) 0.0339 (11) 0.0234 (10) −0.0013 (8) 0.0019 (7) 0.0060 (8)
C12 0.0285 (10) 0.0308 (11) 0.0275 (11) −0.0019 (8) 0.0020 (8) 0.0048 (8)
C13 0.0252 (10) 0.0396 (12) 0.0218 (10) −0.0017 (8) 0.0027 (7) 0.0028 (8)
C14 0.0294 (10) 0.0383 (12) 0.0237 (10) −0.0005 (8) 0.0051 (8) 0.0093 (9)
C15 0.0266 (10) 0.0320 (11) 0.0304 (11) −0.0018 (8) 0.0023 (8) 0.0090 (9)
C16 0.0282 (10) 0.0339 (12) 0.0259 (11) −0.0001 (8) 0.0025 (8) 0.0018 (8)
C17 0.0434 (12) 0.0404 (12) 0.0287 (12) −0.0045 (10) 0.0078 (9) −0.0043 (9)
C18 0.0412 (12) 0.0330 (12) 0.0423 (13) −0.0009 (9) 0.0070 (10) 0.0054 (10)

Geometric parameters (Å, °)

O1—C4 1.376 (2) O3—C13 1.374 (2)
O1—C8 1.427 (2) O3—C17 1.432 (2)
O2—C6 1.370 (2) O4—C15 1.375 (2)
O2—C9 1.429 (2) O4—C18 1.432 (2)
C1—C1i 1.328 (3) C10—C10ii 1.326 (4)
C1—C2 1.469 (2) C10—C11 1.470 (2)
C1—H1 0.9500 C10—H10 0.9500
C2—C7 1.383 (3) C11—C16 1.392 (3)
C2—C3 1.405 (2) C11—C12 1.401 (3)
C3—C4 1.379 (2) C12—C13 1.389 (2)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.395 (3) C13—C14 1.384 (3)
C5—C6 1.390 (2) C14—C15 1.382 (3)
C5—H5 0.9500 C14—H14 0.9500
C6—C7 1.394 (2) C15—C16 1.394 (2)
C7—H7 0.9500 C16—H16 0.9500
C8—H8A 0.9800 C17—H17A 0.9800
C8—H8B 0.9800 C17—H17B 0.9800
C8—H8C 0.9800 C17—H17C 0.9800
C9—H9A 0.9800 C18—H18A 0.9800
C9—H9B 0.9800 C18—H18B 0.9800
C9—H9C 0.9800 C18—H18C 0.9800
C4—O1—C8 117.99 (13) C13—O3—C17 117.61 (14)
C6—O2—C9 117.31 (15) C15—O4—C18 116.97 (14)
C1i—C1—C2 126.9 (2) C10ii—C10—C11 126.3 (2)
C1i—C1—H1 116.6 C10ii—C10—H10 116.9
C2—C1—H1 116.6 C11—C10—H10 116.9
C7—C2—C3 119.73 (16) C16—C11—C12 119.91 (16)
C7—C2—C1 118.41 (16) C16—C11—C10 117.89 (17)
C3—C2—C1 121.87 (16) C12—C11—C10 122.19 (17)
C4—C3—C2 119.10 (17) C13—C12—C11 119.14 (17)
C4—C3—H3 120.5 C13—C12—H12 120.4
C2—C3—H3 120.5 C11—C12—H12 120.4
O1—C4—C3 124.02 (16) O3—C13—C14 115.15 (16)
O1—C4—C5 114.20 (15) O3—C13—C12 123.76 (17)
C3—C4—C5 121.77 (16) C14—C13—C12 121.09 (17)
C6—C5—C4 118.58 (16) C15—C14—C13 119.63 (16)
C6—C5—H5 120.7 C15—C14—H14 120.2
C4—C5—H5 120.7 C13—C14—H14 120.2
O2—C6—C5 124.17 (16) O4—C15—C14 116.03 (16)
O2—C6—C7 115.49 (16) O4—C15—C16 123.58 (17)
C5—C6—C7 120.34 (17) C14—C15—C16 120.38 (17)
C2—C7—C6 120.47 (17) C11—C16—C15 119.84 (17)
C2—C7—H7 119.8 C11—C16—H16 120.1
C6—C7—H7 119.8 C15—C16—H16 120.1
O1—C8—H8A 109.5 O3—C17—H17A 109.5
O1—C8—H8B 109.5 O3—C17—H17B 109.5
H8A—C8—H8B 109.5 H17A—C17—H17B 109.5
O1—C8—H8C 109.5 O3—C17—H17C 109.5
H8A—C8—H8C 109.5 H17A—C17—H17C 109.5
H8B—C8—H8C 109.5 H17B—C17—H17C 109.5
O2—C9—H9A 109.5 O4—C18—H18A 109.5
O2—C9—H9B 109.5 O4—C18—H18B 109.5
H9A—C9—H9B 109.5 H18A—C18—H18B 109.5
O2—C9—H9C 109.5 O4—C18—H18C 109.5
H9A—C9—H9C 109.5 H18A—C18—H18C 109.5
H9B—C9—H9C 109.5 H18B—C18—H18C 109.5
C1i—C1—C2—C7 179.3 (2) C10ii—C10—C11—C16 172.5 (2)
C1i—C1—C2—C3 −0.3 (3) C10ii—C10—C11—C12 −6.9 (4)
C7—C2—C3—C4 −0.2 (3) C16—C11—C12—C13 −0.2 (3)
C1—C2—C3—C4 179.35 (16) C10—C11—C12—C13 179.18 (17)
C8—O1—C4—C3 −4.1 (2) C17—O3—C13—C14 179.90 (16)
C8—O1—C4—C5 176.49 (15) C17—O3—C13—C12 0.3 (3)
C2—C3—C4—O1 −179.24 (16) C11—C12—C13—O3 179.04 (16)
C2—C3—C4—C5 0.2 (3) C11—C12—C13—C14 −0.5 (3)
O1—C4—C5—C6 179.31 (15) O3—C13—C14—C15 −178.83 (15)
C3—C4—C5—C6 −0.2 (3) C12—C13—C14—C15 0.8 (3)
C9—O2—C6—C5 6.2 (3) C18—O4—C15—C14 179.78 (16)
C9—O2—C6—C7 −173.96 (15) C18—O4—C15—C16 −1.1 (3)
C4—C5—C6—O2 179.99 (16) C13—C14—C15—O4 178.80 (16)
C4—C5—C6—C7 0.2 (3) C13—C14—C15—C16 −0.3 (3)
C3—C2—C7—C6 0.2 (3) C12—C11—C16—C15 0.6 (3)
C1—C2—C7—C6 −179.33 (16) C10—C11—C16—C15 −178.75 (16)
O2—C6—C7—C2 179.95 (15) O4—C15—C16—C11 −179.43 (16)
C5—C6—C7—C2 −0.2 (3) C14—C15—C16—C11 −0.4 (3)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2547).

References

  1. Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res.24, 2783–2840. [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  3. Botella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563–5570.
  4. Fremont, L. (2000). Life Sci.66, 663–673. [DOI] [PubMed]
  5. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218–220. [DOI] [PubMed]
  7. Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
  8. Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem.45, 160–164. [DOI] [PubMed]
  9. Lion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem.48, 1292–1295. [DOI] [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Reetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed 37, 481–483. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Uda, M., Mizutani, T., Hayakawa, J., Momotake, A., Ikegami, M., Nagahata, R. & Arai, T. (2002). Photochem. Photobiol.6, 596–605. [DOI] [PubMed]
  15. Velder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273–278.
  16. Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735–1742. [DOI] [PubMed]
  17. Wolter, F. & Stein, J. (2002). Drugs Future, 27, 949–960.
  18. Yin, Q., Shi, Y.-M., Liu, H.-M., Li, C.-B. & Zhang, W.-Q. (2002). Acta Cryst. E58, o1180–o1181.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903116X/hg2547sup1.cif

e-65-o2150-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903116X/hg2547Isup2.hkl

e-65-o2150-Isup2.hkl (162.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES