Abstract
The title compound, C18H20O4, was prepared in high yield from 3,5-dimethoxystyrene via a Ru-catalysed homo-olefin metathesis. Exclusive formation of the E-configurated isomer was observed. Interestingly, one symmetric unit contains two molecules adopting an s-syn-anti and and an all-s-anti conformation.
Related literature
For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006 ▶). Alternative methodologies for the synthesis of oxy-functionalized stilbenes using Wittig-type olefinations or Heck couplings have been described by Kim et al. (2002 ▶), Lion et al. (2005 ▶), Botella & Nayera (2004 ▶) and Reetz et al. (1998 ▶). For the bioactivity of various stilbenes with a focus on their anticancer activity, see: Aggarwal et al. (2004 ▶); Wolter & Stein (2002 ▶); Fremont (2000 ▶); Jang et al. (1997 ▶); Wieder et al. (2001 ▶). For related structures and syntheses see: Yin et al. (2002 ▶); Uda et al. (2002 ▶).
Experimental
Crystal data
C18H20O4
M r = 300.34
Monoclinic,
a = 7.1954 (3) Å
b = 9.4203 (4) Å
c = 22.6762 (5) Å
β = 93.783 (2)°
V = 1533.71 (10) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 100 K
0.4 × 0.2 × 0.2 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: none
7687 measured reflections
3320 independent reflections
2142 reflections with I > 2σ(I)
R int = 0.041
Refinement
R[F 2 > 2σ(F 2)] = 0.055
wR(F 2) = 0.150
S = 1.03
3320 reflections
207 parameters
H-atom parameters constrained
Δρmax = 0.24 e Å−3
Δρmin = −0.24 e Å−3
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SCHAKAL99 (Keller 1999 ▶); software used to prepare material for publication: PLATON (Spek, 2009 ▶) and enCIFer (Allen et al., 2004 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903116X/hg2547sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680903116X/hg2547Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
In recent years, polyhydroxylated stilbenes such as resveratrol have gained a tremendous importance especially due to their potential for the prevention and therapy of cancer (Aggarwal et al. (2004), Wolter et al. (2002), Fremont (2000), Jang et al. (1997)). In the course of our own research in the field of bioactive stilbenes (Wieder et al. (2001)) we were able to develop a highly efficient synthetic route towards symmetrically as well as unsymmetrically substituted E-stilbenes applying a Ru-catalyzed metathesis strategy (Velder et al. (2006)). Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998). One of the compounds prepared was the title compound trans-1,2-bis-(3,5-dimethoxyphenyl)ethene. The asymmetric unit contains two molecules, A and B, both of which exhibit a center of symmetry (figure 1). The 3,5-dimethoxy groups of molecule B all adopt a s-anti configuration, whereas in molecule A, a s-syn as well as a s-anti conformation is found on both sides. Zhang and co-workers reported the same observation on a related structure (Yin et al., 2002). The torsion angles between the benzene ring planes in molecule A are 0.2 (3)° (C1a—C1—C2—C3), which gives the molecule a planar shape. Molecule B, in contrast, adopts a slightly twisted conformation with a torsion angle of 7.0 (2)° (C10b—C10—C11—C12). The molecules form slightly twisted pseudo-layers which are arranged along the b axis (Fig. 2). In figure 3, two of those pseudo-layers are shown from the top view (with the front layer being displayed in dark and the retral layer in light green).
Experimental
In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, 2 mol %) was weighted into a 25 ml Schlenk tube, which was then sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3,5-dimethoxy-styrene (1 mmol) in CH2Cl2 (10 ml) was then added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by flash chromatography (SiO2, cyclohexane/ ethyl acetate = 10:1) to give 138 mg (0.46 mmol; 92%) of the homo metathesis product (1). mp. 142 °C (Uda et al., 2002: 141–144 °C). 1H NMR (300 MHz, CDCl3): δ = 3.81 (s, 6H, OCH3), 6.4 (t, 1H, J = 2.1 Hz,H-4), 6.67 (d, 2H, J = 2.1 Hz, H-2, H-6), 7.00 (s, 1H, H-7); 13C NMR (75 MHz, CDCl3): δ = 55.4 (OCH3), 100.2 (C-4), 104.7 (C-2, C-6), 129.2 (C-7), 139.2 (C-1), 161.0 (C-3, C-5); HRMS, calcd for C18H20O4 (M+) 300.1361, found 300.136.
Figures
Fig. 1.
A view of (1). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
View of the unit cell along the b axis.
Fig. 3.
Top view of two pseudo layers.
Crystal data
| C18H20O4 | F(000) = 640 |
| Mr = 300.34 | Dx = 1.301 Mg m−3 |
| Monoclinic, P21/c | Melting point: 142 K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.1954 (3) Å | Cell parameters from 7687 reflections |
| b = 9.4203 (4) Å | θ = 2.3–27.0° |
| c = 22.6762 (5) Å | µ = 0.09 mm−1 |
| β = 93.783 (2)° | T = 100 K |
| V = 1533.71 (10) Å3 | Needle, colourless |
| Z = 4 | 0.4 × 0.2 × 0.2 mm |
Data collection
| Nonius KappaCCD diffractometer | 2142 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.041 |
| graphite | θmax = 27.0°, θmin = 2.3° |
| φ and ω scans | h = −6→9 |
| 7687 measured reflections | k = −12→10 |
| 3320 independent reflections | l = −25→28 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.150 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0722P)2 + 0.274P] where P = (Fo2 + 2Fc2)/3 |
| 3320 reflections | (Δ/σ)max < 0.001 |
| 207 parameters | Δρmax = 0.24 e Å−3 |
| 0 restraints | Δρmin = −0.24 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The coordinates of the hydrogenatoms are constrained, and the U values of the H atoms are constrained relative to the Ueq of the atom the hydrogen binds to (1.2 for CH and CH2, 1.5 for CH3). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.16550 (18) | 0.11969 (13) | 0.29039 (5) | 0.0322 (4) | |
| O2 | 0.11990 (18) | 0.52539 (13) | 0.41414 (6) | 0.0346 (4) | |
| C1 | 0.0096 (2) | 0.07001 (18) | 0.49846 (8) | 0.0272 (4) | |
| H1 | −0.0099 | 0.1220 | 0.5334 | 0.033* | |
| C2 | 0.0575 (2) | 0.15286 (19) | 0.44674 (8) | 0.0256 (4) | |
| C3 | 0.0903 (2) | 0.0879 (2) | 0.39261 (8) | 0.0268 (4) | |
| H3 | 0.0831 | −0.0123 | 0.3885 | 0.032* | |
| C4 | 0.1329 (2) | 0.17169 (19) | 0.34549 (8) | 0.0259 (4) | |
| C5 | 0.1450 (2) | 0.31913 (19) | 0.35017 (8) | 0.0275 (4) | |
| H5 | 0.1748 | 0.3753 | 0.3173 | 0.033* | |
| C6 | 0.1123 (2) | 0.38210 (19) | 0.40394 (8) | 0.0267 (4) | |
| C7 | 0.0691 (2) | 0.2989 (2) | 0.45200 (8) | 0.0274 (4) | |
| H7 | 0.0475 | 0.3428 | 0.4886 | 0.033* | |
| C8 | 0.1666 (3) | −0.03060 (19) | 0.28252 (8) | 0.0312 (5) | |
| H8A | 0.2575 | −0.0734 | 0.3113 | 0.047* | |
| H8B | 0.2006 | −0.0530 | 0.2424 | 0.047* | |
| H8C | 0.0424 | −0.0687 | 0.2884 | 0.047* | |
| C9 | 0.1455 (3) | 0.6156 (2) | 0.36467 (9) | 0.0359 (5) | |
| H9A | 0.2645 | 0.5933 | 0.3482 | 0.054* | |
| H9B | 0.1457 | 0.7149 | 0.3775 | 0.054* | |
| H9C | 0.0437 | 0.6003 | 0.3344 | 0.054* | |
| O3 | 0.31579 (18) | 0.49045 (14) | 0.21349 (5) | 0.0360 (4) | |
| O4 | 0.33384 (18) | 0.03486 (14) | 0.13362 (6) | 0.0392 (4) | |
| C10 | 0.4952 (2) | 0.43244 (19) | 0.00794 (8) | 0.0299 (4) | |
| H10 | 0.5284 | 0.3637 | −0.0202 | 0.040 (6)* | |
| C11 | 0.4382 (2) | 0.3787 (2) | 0.06489 (8) | 0.0273 (4) | |
| C12 | 0.4051 (2) | 0.4693 (2) | 0.11208 (8) | 0.0289 (4) | |
| H12 | 0.4206 | 0.5689 | 0.1083 | 0.020 (5)* | |
| C13 | 0.3493 (2) | 0.4114 (2) | 0.16439 (8) | 0.0288 (5) | |
| C14 | 0.3246 (2) | 0.2665 (2) | 0.17034 (8) | 0.0303 (5) | |
| H14 | 0.2849 | 0.2285 | 0.2062 | 0.047 (6)* | |
| C15 | 0.3581 (2) | 0.1774 (2) | 0.12378 (8) | 0.0296 (5) | |
| C16 | 0.4155 (2) | 0.2328 (2) | 0.07095 (8) | 0.0293 (5) | |
| H16 | 0.4391 | 0.1711 | 0.0392 | 0.030 (5)* | |
| C17 | 0.3394 (3) | 0.6410 (2) | 0.20992 (9) | 0.0373 (5) | |
| H17A | 0.4679 | 0.6625 | 0.2011 | 0.056* | |
| H17B | 0.3128 | 0.6845 | 0.2477 | 0.056* | |
| H17C | 0.2536 | 0.6792 | 0.1785 | 0.056* | |
| C18 | 0.3671 (3) | −0.0593 (2) | 0.08589 (9) | 0.0386 (5) | |
| H18A | 0.2853 | −0.0340 | 0.0512 | 0.058* | |
| H18B | 0.3415 | −0.1571 | 0.0976 | 0.058* | |
| H18C | 0.4974 | −0.0514 | 0.0761 | 0.058* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0478 (8) | 0.0283 (7) | 0.0216 (7) | −0.0022 (6) | 0.0118 (6) | 0.0006 (6) |
| O2 | 0.0487 (8) | 0.0268 (8) | 0.0291 (8) | −0.0033 (6) | 0.0080 (6) | 0.0032 (6) |
| C1 | 0.0288 (9) | 0.0332 (10) | 0.0200 (9) | 0.0004 (8) | 0.0046 (7) | −0.0001 (8) |
| C2 | 0.0249 (9) | 0.0291 (11) | 0.0227 (10) | 0.0000 (8) | 0.0014 (7) | 0.0040 (8) |
| C3 | 0.0280 (10) | 0.0261 (10) | 0.0265 (11) | −0.0010 (7) | 0.0028 (8) | 0.0025 (8) |
| C4 | 0.0256 (9) | 0.0307 (11) | 0.0216 (10) | 0.0010 (8) | 0.0034 (7) | 0.0005 (8) |
| C5 | 0.0291 (10) | 0.0288 (11) | 0.0252 (10) | −0.0006 (8) | 0.0053 (8) | 0.0073 (8) |
| C6 | 0.0269 (10) | 0.0249 (10) | 0.0281 (11) | −0.0020 (8) | 0.0008 (8) | 0.0025 (8) |
| C7 | 0.0294 (10) | 0.0295 (10) | 0.0235 (10) | −0.0007 (8) | 0.0040 (8) | 0.0012 (8) |
| C8 | 0.0372 (11) | 0.0303 (11) | 0.0266 (11) | −0.0027 (8) | 0.0056 (8) | −0.0018 (8) |
| C9 | 0.0444 (12) | 0.0292 (11) | 0.0342 (12) | −0.0031 (9) | 0.0046 (9) | 0.0078 (9) |
| O3 | 0.0443 (8) | 0.0397 (8) | 0.0251 (8) | −0.0033 (6) | 0.0097 (6) | 0.0002 (6) |
| O4 | 0.0489 (9) | 0.0328 (8) | 0.0370 (8) | −0.0008 (6) | 0.0108 (7) | 0.0093 (6) |
| C10 | 0.0324 (10) | 0.0344 (10) | 0.0232 (10) | −0.0013 (9) | 0.0044 (8) | 0.0020 (9) |
| C11 | 0.0248 (9) | 0.0339 (11) | 0.0234 (10) | −0.0013 (8) | 0.0019 (7) | 0.0060 (8) |
| C12 | 0.0285 (10) | 0.0308 (11) | 0.0275 (11) | −0.0019 (8) | 0.0020 (8) | 0.0048 (8) |
| C13 | 0.0252 (10) | 0.0396 (12) | 0.0218 (10) | −0.0017 (8) | 0.0027 (7) | 0.0028 (8) |
| C14 | 0.0294 (10) | 0.0383 (12) | 0.0237 (10) | −0.0005 (8) | 0.0051 (8) | 0.0093 (9) |
| C15 | 0.0266 (10) | 0.0320 (11) | 0.0304 (11) | −0.0018 (8) | 0.0023 (8) | 0.0090 (9) |
| C16 | 0.0282 (10) | 0.0339 (12) | 0.0259 (11) | −0.0001 (8) | 0.0025 (8) | 0.0018 (8) |
| C17 | 0.0434 (12) | 0.0404 (12) | 0.0287 (12) | −0.0045 (10) | 0.0078 (9) | −0.0043 (9) |
| C18 | 0.0412 (12) | 0.0330 (12) | 0.0423 (13) | −0.0009 (9) | 0.0070 (10) | 0.0054 (10) |
Geometric parameters (Å, °)
| O1—C4 | 1.376 (2) | O3—C13 | 1.374 (2) |
| O1—C8 | 1.427 (2) | O3—C17 | 1.432 (2) |
| O2—C6 | 1.370 (2) | O4—C15 | 1.375 (2) |
| O2—C9 | 1.429 (2) | O4—C18 | 1.432 (2) |
| C1—C1i | 1.328 (3) | C10—C10ii | 1.326 (4) |
| C1—C2 | 1.469 (2) | C10—C11 | 1.470 (2) |
| C1—H1 | 0.9500 | C10—H10 | 0.9500 |
| C2—C7 | 1.383 (3) | C11—C16 | 1.392 (3) |
| C2—C3 | 1.405 (2) | C11—C12 | 1.401 (3) |
| C3—C4 | 1.379 (2) | C12—C13 | 1.389 (2) |
| C3—H3 | 0.9500 | C12—H12 | 0.9500 |
| C4—C5 | 1.395 (3) | C13—C14 | 1.384 (3) |
| C5—C6 | 1.390 (2) | C14—C15 | 1.382 (3) |
| C5—H5 | 0.9500 | C14—H14 | 0.9500 |
| C6—C7 | 1.394 (2) | C15—C16 | 1.394 (2) |
| C7—H7 | 0.9500 | C16—H16 | 0.9500 |
| C8—H8A | 0.9800 | C17—H17A | 0.9800 |
| C8—H8B | 0.9800 | C17—H17B | 0.9800 |
| C8—H8C | 0.9800 | C17—H17C | 0.9800 |
| C9—H9A | 0.9800 | C18—H18A | 0.9800 |
| C9—H9B | 0.9800 | C18—H18B | 0.9800 |
| C9—H9C | 0.9800 | C18—H18C | 0.9800 |
| C4—O1—C8 | 117.99 (13) | C13—O3—C17 | 117.61 (14) |
| C6—O2—C9 | 117.31 (15) | C15—O4—C18 | 116.97 (14) |
| C1i—C1—C2 | 126.9 (2) | C10ii—C10—C11 | 126.3 (2) |
| C1i—C1—H1 | 116.6 | C10ii—C10—H10 | 116.9 |
| C2—C1—H1 | 116.6 | C11—C10—H10 | 116.9 |
| C7—C2—C3 | 119.73 (16) | C16—C11—C12 | 119.91 (16) |
| C7—C2—C1 | 118.41 (16) | C16—C11—C10 | 117.89 (17) |
| C3—C2—C1 | 121.87 (16) | C12—C11—C10 | 122.19 (17) |
| C4—C3—C2 | 119.10 (17) | C13—C12—C11 | 119.14 (17) |
| C4—C3—H3 | 120.5 | C13—C12—H12 | 120.4 |
| C2—C3—H3 | 120.5 | C11—C12—H12 | 120.4 |
| O1—C4—C3 | 124.02 (16) | O3—C13—C14 | 115.15 (16) |
| O1—C4—C5 | 114.20 (15) | O3—C13—C12 | 123.76 (17) |
| C3—C4—C5 | 121.77 (16) | C14—C13—C12 | 121.09 (17) |
| C6—C5—C4 | 118.58 (16) | C15—C14—C13 | 119.63 (16) |
| C6—C5—H5 | 120.7 | C15—C14—H14 | 120.2 |
| C4—C5—H5 | 120.7 | C13—C14—H14 | 120.2 |
| O2—C6—C5 | 124.17 (16) | O4—C15—C14 | 116.03 (16) |
| O2—C6—C7 | 115.49 (16) | O4—C15—C16 | 123.58 (17) |
| C5—C6—C7 | 120.34 (17) | C14—C15—C16 | 120.38 (17) |
| C2—C7—C6 | 120.47 (17) | C11—C16—C15 | 119.84 (17) |
| C2—C7—H7 | 119.8 | C11—C16—H16 | 120.1 |
| C6—C7—H7 | 119.8 | C15—C16—H16 | 120.1 |
| O1—C8—H8A | 109.5 | O3—C17—H17A | 109.5 |
| O1—C8—H8B | 109.5 | O3—C17—H17B | 109.5 |
| H8A—C8—H8B | 109.5 | H17A—C17—H17B | 109.5 |
| O1—C8—H8C | 109.5 | O3—C17—H17C | 109.5 |
| H8A—C8—H8C | 109.5 | H17A—C17—H17C | 109.5 |
| H8B—C8—H8C | 109.5 | H17B—C17—H17C | 109.5 |
| O2—C9—H9A | 109.5 | O4—C18—H18A | 109.5 |
| O2—C9—H9B | 109.5 | O4—C18—H18B | 109.5 |
| H9A—C9—H9B | 109.5 | H18A—C18—H18B | 109.5 |
| O2—C9—H9C | 109.5 | O4—C18—H18C | 109.5 |
| H9A—C9—H9C | 109.5 | H18A—C18—H18C | 109.5 |
| H9B—C9—H9C | 109.5 | H18B—C18—H18C | 109.5 |
| C1i—C1—C2—C7 | 179.3 (2) | C10ii—C10—C11—C16 | 172.5 (2) |
| C1i—C1—C2—C3 | −0.3 (3) | C10ii—C10—C11—C12 | −6.9 (4) |
| C7—C2—C3—C4 | −0.2 (3) | C16—C11—C12—C13 | −0.2 (3) |
| C1—C2—C3—C4 | 179.35 (16) | C10—C11—C12—C13 | 179.18 (17) |
| C8—O1—C4—C3 | −4.1 (2) | C17—O3—C13—C14 | 179.90 (16) |
| C8—O1—C4—C5 | 176.49 (15) | C17—O3—C13—C12 | 0.3 (3) |
| C2—C3—C4—O1 | −179.24 (16) | C11—C12—C13—O3 | 179.04 (16) |
| C2—C3—C4—C5 | 0.2 (3) | C11—C12—C13—C14 | −0.5 (3) |
| O1—C4—C5—C6 | 179.31 (15) | O3—C13—C14—C15 | −178.83 (15) |
| C3—C4—C5—C6 | −0.2 (3) | C12—C13—C14—C15 | 0.8 (3) |
| C9—O2—C6—C5 | 6.2 (3) | C18—O4—C15—C14 | 179.78 (16) |
| C9—O2—C6—C7 | −173.96 (15) | C18—O4—C15—C16 | −1.1 (3) |
| C4—C5—C6—O2 | 179.99 (16) | C13—C14—C15—O4 | 178.80 (16) |
| C4—C5—C6—C7 | 0.2 (3) | C13—C14—C15—C16 | −0.3 (3) |
| C3—C2—C7—C6 | 0.2 (3) | C12—C11—C16—C15 | 0.6 (3) |
| C1—C2—C7—C6 | −179.33 (16) | C10—C11—C16—C15 | −178.75 (16) |
| O2—C6—C7—C2 | 179.95 (15) | O4—C15—C16—C11 | −179.43 (16) |
| C5—C6—C7—C2 | −0.2 (3) | C14—C15—C16—C11 | −0.4 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2547).
References
- Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res.24, 2783–2840. [PubMed]
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
- Botella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563–5570.
- Fremont, L. (2000). Life Sci.66, 663–673. [DOI] [PubMed]
- Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218–220. [DOI] [PubMed]
- Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
- Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem.45, 160–164. [DOI] [PubMed]
- Lion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem.48, 1292–1295. [DOI] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Reetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed 37, 481–483. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Uda, M., Mizutani, T., Hayakawa, J., Momotake, A., Ikegami, M., Nagahata, R. & Arai, T. (2002). Photochem. Photobiol.6, 596–605. [DOI] [PubMed]
- Velder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273–278.
- Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735–1742. [DOI] [PubMed]
- Wolter, F. & Stein, J. (2002). Drugs Future, 27, 949–960.
- Yin, Q., Shi, Y.-M., Liu, H.-M., Li, C.-B. & Zhang, W.-Q. (2002). Acta Cryst. E58, o1180–o1181.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903116X/hg2547sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680903116X/hg2547Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



