Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2091. doi: 10.1107/S1600536809030244

(R)-7-Bromo-2,3,4,4a-tetra­hydro-1H-xanthen-1-one

Ai-Bao Xia a, Jie Tang a, Jun-Rong Jiang a, Yi-Feng Wang a, Shu-Ping Luo a,*
PMCID: PMC2969887  PMID: 21577508

Abstract

The title compound, C13H11BrO2, contains a tricyclic ring system with one chiral center which exhibits an R configuration. The crystal structure is devoid of any classical hydrogen bonding.

Related literature

For related structures, see: Shi et al. (2004); Ndjakou Lenta et al. (2007). Domino or cascade reactions allow, in principle, the formation of multiple new bonds and stereocenters in a one-pot system, see: Enders et al. (2007); Yu & Wang (2002).graphic file with name e-65-o2091-scheme1.jpg

Experimental

Crystal data

  • C13H11BrO2

  • M r = 279.13

  • Monoclinic, Inline graphic

  • a = 7.5419 (4) Å

  • b = 6.9039 (3) Å

  • c = 10.7634 (5) Å

  • β = 93.7110 (12)°

  • V = 559.26 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 296 K

  • 0.40 × 0.37 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.252, T max = 0.386

  • 5496 measured reflections

  • 2525 independent reflections

  • 1772 reflections with F 2 > 2σ(F 2)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.102

  • S = 1.00

  • 2525 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983), 1145 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030244/pv2187sup1.cif

e-65-o2091-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030244/pv2187Isup2.hkl

e-65-o2091-Isup2.hkl (124KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the help of Professor Jian-Ming Gu of Zhejiang University.

supplementary crystallographic information

Comment

There has been growing interest in the study of domino or cascade reaction as it allows in principle the formation of multiple new bonds and stereocenters in one-pot system (Enders et al., 2007; Yu & Wang, 2002). Consequently, the title compound, (I), was synthesized as one of a series of oxa-Michael-aldol products under investigation. In this paper, the absolute configuration and crystal structure of (I) has been presented.

The title compound is shown in Fig. 1. One of the three fused rings in (I), the cyclohexanone ring (C1/C/C3/C4/C5/C13) adopts a distorted chair conformation while the ring O2/C5/C6/C11/C12/C13 is in a distorted half chair conformation. The bromophenyl ring (C6—C11/Br) is essentially planar as expected. The crystal structure is devoid of any classical hydrogen bonding. The crystal structures of closely related compound to (I) have been reported (Shi et al., 2004; Ndjakou Lenta et al., 2007).

ADDSYM in PLATON (Spek, 2009) suggested a pseudo mirror plane in the structure and P21/m as the alternate space group requiring all the atoms of the title compound to be coplanar with the atom, C2–C5 Sp2 hybridized which contravenes the true structure of the title compound.

Experimental

A 1,4-dioxane (1 ml) solution of alicylic aldehyde (1 mmol) and cyclohex-2-enone (3.5 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.3 mmol) as amine catalyst and benzoic acid (0.3 mmol) as additive was stirred at room temperature for 72 hrs. After completion of the reaction, the mixture was washed with water and extracted with ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using petroleum ether-aether (2:1)) as an eluent. Single crystals of the title compound were obtained by slow evaporation of an acetone solution.

Refinement

An absolute structure of (I) was determined by the Flack (1983) method without merging Friedel Pairs (1145) of reflections. H atoms were placed in calculated positions with in riding mode with C—H distances 0.93, 0.97 and 0.98 Å, for aryl, methylene and methine H-atoms; Uiso(H) = 1.2Ueq of the carrier atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Unit cell packing of the title compound.

Crystal data

C13H11BrO2 F(000) = 280.00
Mr = 279.13 Dx = 1.657 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2yb Cell parameters from 4299 reflections
a = 7.5419 (4) Å θ = 3.2–27.4°
b = 6.9039 (3) Å µ = 3.67 mm1
c = 10.7634 (5) Å T = 296 K
β = 93.7110 (12)° Chunk, yellow
V = 559.26 (5) Å3 0.40 × 0.37 × 0.26 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 1772 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.036
ω scans θmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.252, Tmax = 0.386 k = −8→8
5496 measured reflections l = −12→13
2525 independent reflections

Refinement

Refinement on F2 (Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.033 Δρmax = 0.64 e Å3
wR(F2) = 0.102 Δρmin = −0.88 e Å3
S = 1.00 Extinction correction: SHELXL97 (Sheldrick, 2008)
2525 reflections Extinction coefficient: 0.035 (3)
147 parameters Absolute structure: Flack (1983), 1145 Friedel pairs
H-atom parameters constrained Flack parameter: 0.01 (2)
w = 1/[σ2(Fo2) + (0.02P)2 + P] where P = (Fo2 + 2Fc2)/3

Special details

Experimental. The structure of the title compound was confirmed by NMR and HRMS methods: 1HNMR (500 MHz, CDCl3): 7.33–7.31(m, 3H), 6.77–6.75(d, J=9.5 Hz,1H),5.00–4.97(m, 1H),2.62–2.58 (m, 1H), 2.51–2.46(m, 1H),2.42–2.35(m, 1H),2.13–2.07(m, 1H),2.04–1.96 (m, 1H), 1.75–1.65(m, 1H) p.p.m.; 13CNMR (125 MHz, CDCl3): 197.1, 154.8, 134.4, 131.8, 131.4, 129.9, 123.9, 117.8, 114.0, 74.8, 38.8, 29.6, 17.9 p.p.m.. HRMS: (EI+) m/z calcd for (C13H11BrO2)+ 277.9942, found 277.9949.
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.96613 (6) 0.67049 (12) 0.66752 (4) 0.0633 (2)
O1 0.5964 (5) 0.6274 (8) −0.0423 (3) 0.0656 (16)
O2 0.2944 (3) 0.6625 (11) 0.3348 (2) 0.0473 (7)
C1 0.4600 (6) 0.6384 (11) 0.0116 (4) 0.0505 (16)
C2 0.2803 (7) 0.6187 (12) −0.0570 (4) 0.063 (2)
C3 0.1314 (6) 0.7222 (8) 0.0028 (4) 0.0557 (18)
C4 0.1286 (5) 0.6734 (16) 0.1395 (3) 0.0519 (11)
C5 0.2999 (6) 0.7335 (7) 0.2089 (4) 0.0440 (13)
C6 0.4495 (4) 0.6742 (14) 0.4075 (3) 0.0401 (8)
C7 0.4396 (5) 0.6820 (14) 0.5352 (3) 0.0434 (10)
C8 0.5937 (5) 0.6827 (14) 0.6123 (3) 0.0454 (11)
C9 0.7562 (5) 0.6759 (14) 0.5602 (3) 0.0412 (9)
C10 0.7694 (5) 0.6637 (16) 0.4334 (3) 0.0425 (9)
C11 0.6136 (4) 0.6623 (14) 0.3548 (3) 0.0393 (8)
C12 0.6132 (5) 0.6402 (11) 0.2208 (4) 0.0447 (15)
C13 0.4640 (4) 0.6636 (15) 0.1494 (3) 0.0413 (9)
H5 0.3034 0.8753 0.2117 0.053*
H7 0.3294 0.6868 0.5692 0.052*
H8 0.5879 0.6877 0.6983 0.054*
H10 0.8801 0.6564 0.4004 0.051*
H12 0.7181 0.6095 0.1844 0.054*
H21 0.2509 0.4820 −0.0622 0.075*
H22 0.2883 0.6705 −0.1402 0.075*
H31 0.0191 0.6841 −0.0391 0.067*
H32 0.1475 0.8609 −0.0060 0.067*
H41 0.0304 0.7408 0.1742 0.062*
H42 0.1129 0.5347 0.1486 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0439 (2) 0.0990 (4) 0.0455 (2) −0.0020 (5) −0.00874 (17) 0.0000 (5)
O1 0.062 (2) 0.095 (5) 0.0402 (16) 0.016 (2) 0.0060 (15) −0.009 (2)
O2 0.0289 (13) 0.070 (2) 0.0433 (14) 0.006 (3) 0.0015 (10) 0.005 (3)
C1 0.053 (2) 0.056 (4) 0.042 (2) 0.012 (3) −0.0026 (19) −0.005 (2)
C2 0.063 (3) 0.079 (7) 0.043 (2) 0.004 (3) −0.015 (2) −0.003 (3)
C3 0.044 (2) 0.073 (5) 0.048 (2) 0.003 (2) −0.012 (2) 0.009 (2)
C4 0.035 (2) 0.065 (3) 0.056 (2) −0.011 (5) −0.0060 (17) 0.009 (5)
C5 0.038 (2) 0.054 (3) 0.039 (2) 0.000 (2) −0.0029 (18) 0.004 (2)
C6 0.0311 (18) 0.045 (2) 0.0437 (19) −0.001 (3) 0.0006 (14) 0.007 (4)
C7 0.037 (2) 0.053 (2) 0.041 (2) 0.000 (3) 0.0100 (15) 0.006 (3)
C8 0.047 (2) 0.053 (3) 0.0361 (19) −0.002 (3) 0.0038 (16) −0.005 (3)
C9 0.0362 (19) 0.047 (2) 0.0400 (19) −0.003 (4) −0.0060 (14) 0.005 (4)
C10 0.0340 (19) 0.056 (2) 0.0378 (18) 0.001 (4) 0.0050 (14) 0.000 (4)
C11 0.0359 (19) 0.044 (2) 0.0376 (18) −0.002 (3) 0.0014 (14) −0.005 (4)
C12 0.034 (2) 0.058 (4) 0.042 (2) 0.006 (2) 0.0051 (15) 0.005 (3)
C13 0.040 (2) 0.045 (2) 0.0385 (19) 0.001 (4) 0.0004 (15) 0.001 (4)

Geometric parameters (Å, °)

Br1—C9 1.899 (3) C10—C11 1.403 (5)
O1—C1 1.215 (6) C11—C12 1.450 (5)
O2—C5 1.444 (5) C12—C13 1.330 (5)
O2—C6 1.367 (4) C2—H21 0.970
C1—C2 1.507 (7) C2—H22 0.970
C1—C13 1.492 (6) C3—H31 0.970
C2—C3 1.510 (8) C3—H32 0.970
C3—C4 1.511 (6) C4—H41 0.970
C4—C5 1.508 (6) C4—H42 0.970
C5—C13 1.509 (6) C5—H5 0.980
C6—C7 1.382 (5) C7—H7 0.930
C6—C11 1.397 (5) C8—H8 0.930
C7—C8 1.384 (5) C10—H10 0.930
C8—C9 1.381 (5) C12—H12 0.930
C9—C10 1.377 (5)
C5—O2—C6 116.2 (3) C1—C2—H21 108.1
O1—C1—C2 121.5 (4) C1—C2—H22 108.1
O1—C1—C13 121.2 (4) C3—C2—H21 108.1
C2—C1—C13 117.2 (4) C3—C2—H22 108.1
C1—C2—C3 114.7 (4) H21—C2—H22 109.5
C2—C3—C4 111.5 (5) C2—C3—H31 109.0
C3—C4—C5 110.8 (4) C2—C3—H32 109.0
O2—C5—C4 107.2 (4) C4—C3—H31 109.0
O2—C5—C13 111.3 (4) C4—C3—H32 109.0
C4—C5—C13 113.7 (4) H31—C3—H32 109.5
O2—C6—C7 118.2 (3) C3—C4—H41 109.1
O2—C6—C11 120.8 (3) C3—C4—H42 109.1
C7—C6—C11 120.8 (3) C5—C4—H41 109.1
C6—C7—C8 120.0 (3) C5—C4—H42 109.1
C7—C8—C9 119.2 (3) H41—C4—H42 109.5
Br1—C9—C8 118.7 (2) O2—C5—H5 108.1
Br1—C9—C10 119.4 (2) C4—C5—H5 108.1
C8—C9—C10 121.8 (3) C13—C5—H5 108.1
C9—C10—C11 119.1 (3) C6—C7—H7 120.0
C6—C11—C10 119.0 (3) C8—C7—H7 120.0
C6—C11—C12 117.7 (3) C7—C8—H8 120.4
C10—C11—C12 123.3 (3) C9—C8—H8 120.4
C11—C12—C13 120.6 (4) C9—C10—H10 120.4
C1—C13—C5 119.6 (3) C11—C10—H10 120.4
C1—C13—C12 121.5 (4) C11—C12—H12 119.7
C5—C13—C12 118.7 (3) C13—C12—H12 119.7
C5—O2—C6—C7 155.2 (7) O2—C6—C7—C8 176.3 (8)
C5—O2—C6—C11 −30.1 (12) O2—C6—C11—C10 −176.4 (9)
C6—O2—C5—C4 169.6 (7) O2—C6—C11—C12 1.0 (13)
C6—O2—C5—C13 44.7 (8) C7—C6—C11—C10 −1.8 (14)
O1—C1—C2—C3 −153.0 (6) C7—C6—C11—C12 175.6 (8)
O1—C1—C13—C5 162.5 (7) C11—C6—C7—C8 1.6 (14)
O1—C1—C13—C12 −12.2 (13) C6—C7—C8—C9 0.1 (12)
C2—C1—C13—C5 −20.1 (11) C7—C8—C9—Br1 −178.5 (7)
C2—C1—C13—C12 165.2 (8) C7—C8—C9—C10 −1.6 (15)
C13—C1—C2—C3 29.6 (9) Br1—C9—C10—C11 178.2 (7)
C1—C2—C3—C4 −50.2 (8) C8—C9—C10—C11 1.4 (15)
C2—C3—C4—C5 60.7 (8) C9—C10—C11—C6 0.3 (11)
C3—C4—C5—O2 −173.7 (6) C9—C10—C11—C12 −176.9 (9)
C3—C4—C5—C13 −50.2 (9) C6—C11—C12—C13 11.1 (13)
O2—C5—C13—C1 151.9 (7) C10—C11—C12—C13 −171.7 (9)
O2—C5—C13—C12 −33.3 (10) C11—C12—C13—C1 −179.0 (8)
C4—C5—C13—C1 30.7 (10) C11—C12—C13—C5 6.3 (12)
C4—C5—C13—C12 −154.5 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2187).

References

  1. Enders, D., Grondal, C. & Huttl, M. R. M. (2007). Angew. Chem. Int. Ed.46, 1570–1581. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Ndjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629–o1631.
  6. Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC and Rigaku (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  9. Shi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878–o880.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yu, X. & Wang, W. (2002). Org. Biomol. Chem.6, 2037–2046. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030244/pv2187sup1.cif

e-65-o2091-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030244/pv2187Isup2.hkl

e-65-o2091-Isup2.hkl (124KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES