Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):o2172. doi: 10.1107/S1600536809032139

2,2,2-Tribromo-N-(4-chloro­phen­yl)acetamide

B Thimme Gowda a,*, Sabine Foro b, P A Suchetan a, Hartmut Fuess b
PMCID: PMC2969889  PMID: 21577578

Abstract

The crystal structure of the title compound, C8H5Br3ClNO, shows both intra­molecular N—H⋯Br and inter­molecular N—H⋯O hydrogen bonding. In the crystal, the mol­ecules are packed into column-like chains in the c-axis direction via the N—H⋯O hydrogen bonds.

Related literature

For the preparation of the compound, see: Gowda et al. (2003). For our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides, see: Gowda et al. (2000, 2007, 2009).graphic file with name e-65-o2172-scheme1.jpg

Experimental

Crystal data

  • C8H5Br3ClNO

  • M r = 406.31

  • Orthorhombic, Inline graphic

  • a = 9.7332 (8) Å

  • b = 10.2462 (9) Å

  • c = 23.898 (2) Å

  • V = 2383.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.35 mm−1

  • T = 299 K

  • 0.40 × 0.16 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.104, T max = 0.355

  • 5692 measured reflections

  • 2353 independent reflections

  • 1643 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.205

  • S = 1.04

  • 2353 reflections

  • 130 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.04 e Å−3

  • Δρmin = −0.95 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032139/pk2183sup1.cif

e-65-o2172-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032139/pk2183Isup2.hkl

e-65-o2172-Isup2.hkl (115.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br1 0.84 (5) 2.87 (10) 3.197 (8) 105 (8)
N1—H1N⋯O1i 0.84 (5) 2.21 (5) 3.038 (9) 168 (10)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of the ring and side chain substituents on the solid state structures of N-aromatic amides (Gowda et al., 2000, 2007, 2009), the structure of 2,2,2-tribromo-N-(4-chlorophenyl)acetamide has been determined (Fig.1). The conformation of the N—H bond is anti to the C=O bond in the side chain, similar to that observed in N-(4-chlorophenyl)acetamide (Gowda et al., 2007), 2,2,2-trichloro-N-(4-chlorophenyl)acetamide (Gowda et al., 2003), and other amides (Gowda et al., 2009). The structure shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. The packing diagram of molecules showing the hydrogen bonds N1—H1N···O1 (Table 1) involved in the formation of molecular chains in the direction of the c-axis is given in Fig. 2.

Experimental

The title compound was prepared from 4-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (5) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The largest residual electron-density features are located in the region of Br3 and Br2. The highest peak is 0.98 Å from Br3 and the deepest hole is 0.50 Å from Br2.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C8H5Br3ClNO F(000) = 1520
Mr = 406.31 Dx = 2.265 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2849 reflections
a = 9.7332 (8) Å θ = 2.6–27.8°
b = 10.2462 (9) Å µ = 10.35 mm1
c = 23.898 (2) Å T = 299 K
V = 2383.3 (3) Å3 Long needle, colourless
Z = 8 0.40 × 0.16 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2353 independent reflections
Radiation source: fine-focus sealed tube 1643 reflections with I > 2σ(I)
graphite Rint = 0.033
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −12→8
Tmin = 0.104, Tmax = 0.355 k = −12→9
5692 measured reflections l = −29→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0891P)2 + 22.8289P] where P = (Fo2 + 2Fc2)/3
2353 reflections (Δ/σ)max = 0.005
130 parameters Δρmax = 2.04 e Å3
1 restraint Δρmin = −0.95 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4391 (10) 0.4634 (8) 0.1037 (4) 0.038 (2)
C2 0.4633 (11) 0.3604 (9) 0.0673 (5) 0.048 (2)
H2 0.3990 0.2939 0.0633 0.058*
C3 0.5841 (10) 0.3580 (10) 0.0369 (5) 0.051 (3)
H3 0.6017 0.2885 0.0129 0.062*
C4 0.6786 (10) 0.4569 (10) 0.0418 (4) 0.051 (3)
C5 0.6549 (10) 0.5578 (10) 0.0790 (5) 0.053 (3)
H5 0.7196 0.6240 0.0829 0.064*
C6 0.5357 (11) 0.5609 (9) 0.1103 (4) 0.048 (2)
H6 0.5206 0.6282 0.1357 0.058*
C7 0.2449 (10) 0.5644 (8) 0.1518 (4) 0.039 (2)
C8 0.1178 (10) 0.5312 (8) 0.1876 (4) 0.043 (2)
N1 0.3172 (8) 0.4601 (6) 0.1361 (3) 0.0425 (19)
H1N 0.283 (10) 0.386 (6) 0.140 (4) 0.051*
O1 0.2715 (7) 0.6760 (5) 0.1408 (3) 0.0521 (18)
Cl1 0.8276 (3) 0.4561 (4) 0.00254 (14) 0.0775 (10)
Br1 −0.00883 (11) 0.42751 (13) 0.14426 (6) 0.0737 (5)
Br2 0.02425 (15) 0.68618 (11) 0.21207 (7) 0.0817 (5)
Br3 0.17735 (16) 0.43813 (13) 0.25385 (5) 0.0792 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.053 (5) 0.028 (4) 0.033 (5) 0.007 (4) 0.005 (4) 0.006 (4)
C2 0.054 (6) 0.036 (5) 0.054 (6) 0.003 (4) 0.005 (5) −0.001 (5)
C3 0.047 (6) 0.053 (6) 0.054 (6) 0.017 (5) 0.009 (5) −0.006 (5)
C4 0.040 (5) 0.073 (7) 0.040 (5) 0.011 (5) 0.004 (4) 0.004 (5)
C5 0.040 (5) 0.050 (6) 0.070 (7) −0.004 (4) 0.008 (5) −0.006 (5)
C6 0.055 (6) 0.042 (5) 0.046 (6) 0.001 (5) 0.000 (5) −0.014 (5)
C7 0.042 (4) 0.035 (5) 0.040 (5) −0.001 (4) 0.009 (4) 0.007 (4)
C8 0.053 (5) 0.023 (4) 0.052 (6) 0.002 (4) 0.011 (5) −0.005 (4)
N1 0.051 (5) 0.025 (4) 0.052 (5) 0.002 (3) 0.013 (4) 0.007 (3)
O1 0.056 (4) 0.024 (3) 0.077 (5) 0.003 (3) 0.022 (4) 0.003 (3)
Cl1 0.0468 (15) 0.117 (3) 0.069 (2) 0.0073 (16) 0.0172 (14) −0.0168 (19)
Br1 0.0450 (6) 0.0856 (9) 0.0904 (10) −0.0022 (6) −0.0020 (6) −0.0336 (8)
Br2 0.0900 (9) 0.0439 (6) 0.1112 (12) 0.0043 (6) 0.0532 (8) −0.0141 (7)
Br3 0.0860 (9) 0.0990 (10) 0.0527 (7) −0.0108 (7) 0.0088 (7) 0.0255 (7)

Geometric parameters (Å, °)

C1—C6 1.380 (13) C5—H5 0.9300
C1—C2 1.389 (13) C6—H6 0.9300
C1—N1 1.416 (12) C7—O1 1.202 (10)
C2—C3 1.382 (14) C7—N1 1.334 (11)
C2—H2 0.9300 C7—C8 1.542 (13)
C3—C4 1.374 (14) C8—Br2 1.921 (8)
C3—H3 0.9300 C8—Br1 1.929 (10)
C4—C5 1.383 (14) C8—Br3 1.937 (10)
C4—Cl1 1.727 (10) N1—H1N 0.84 (5)
C5—C6 1.382 (14)
C6—C1—C2 120.4 (9) C1—C6—C5 119.5 (9)
C6—C1—N1 121.7 (8) C1—C6—H6 120.2
C2—C1—N1 117.8 (8) C5—C6—H6 120.2
C3—C2—C1 119.2 (9) O1—C7—N1 126.0 (8)
C3—C2—H2 120.4 O1—C7—C8 120.2 (8)
C1—C2—H2 120.4 N1—C7—C8 113.8 (7)
C4—C3—C2 120.8 (9) C7—C8—Br2 111.5 (6)
C4—C3—H3 119.6 C7—C8—Br1 109.6 (6)
C2—C3—H3 119.6 Br2—C8—Br1 108.4 (5)
C3—C4—C5 119.6 (9) C7—C8—Br3 108.8 (7)
C3—C4—Cl1 120.8 (8) Br2—C8—Br3 107.4 (5)
C5—C4—Cl1 119.5 (8) Br1—C8—Br3 111.0 (4)
C6—C5—C4 120.4 (9) C7—N1—C1 125.2 (7)
C6—C5—H5 119.8 C7—N1—H1N 119 (7)
C4—C5—H5 119.8 C1—N1—H1N 115 (7)
C6—C1—C2—C3 −1.2 (15) O1—C7—C8—Br2 −2.7 (12)
N1—C1—C2—C3 −177.3 (9) N1—C7—C8—Br2 176.9 (7)
C1—C2—C3—C4 −1.1 (15) O1—C7—C8—Br1 117.4 (9)
C2—C3—C4—C5 2.3 (16) N1—C7—C8—Br1 −63.0 (10)
C2—C3—C4—Cl1 −178.3 (8) O1—C7—C8—Br3 −121.0 (9)
C3—C4—C5—C6 −1.3 (16) N1—C7—C8—Br3 58.6 (9)
Cl1—C4—C5—C6 179.3 (8) O1—C7—N1—C1 0.5 (16)
C2—C1—C6—C5 2.2 (15) C8—C7—N1—C1 −179.1 (9)
N1—C1—C6—C5 178.1 (9) C6—C1—N1—C7 36.9 (14)
C4—C5—C6—C1 −1.0 (16) C2—C1—N1—C7 −147.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Br1 0.84 (5) 2.87 (10) 3.197 (8) 105 (8)
N1—H1N···O1i 0.84 (5) 2.21 (5) 3.038 (9) 168 (10)

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2183).

References

  1. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  2. Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3392.
  4. Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032139/pk2183sup1.cif

e-65-o2172-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032139/pk2183Isup2.hkl

e-65-o2172-Isup2.hkl (115.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES