Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):i68. doi: 10.1107/S1600536809031559

Titanium germanium anti­monide, TiGeSb

Robert Lam a, Arthur Mar a,*
PMCID: PMC2969891  PMID: 21577387

Abstract

TiGeSb adopts the PbFCl- or ZrSiS-type structure, with Ti atoms (4mm symmetry) centred within monocapped square anti­prisms generated by the stacking of denser square nets of Ge atoms (Inline graphic m2 symmetry) alternating with less dense square nets of Sb atoms (4mm symmetry).

Related literature

For PbFCl- or ZrSiS-type structures, see: Tremel & Hoffmann (1987). For a previous report on TiGeSb, see: Dashjav & Kleinke (2002). The Ti—Ge—Sb phase diagram at 670 K was reported by Kozlov & Pavlyuk (2004). For the related ZrGeSb, see: Lam & Mar (1997). For background to solid solutions in this class of compounds, see: Soheilnia et al. (2003); Kozlov & Pavlyuk (2004). Metallic radii were taken from Pauling (1960).

Experimental

Crystal data

  • TiGeSb

  • M r = 242.24

  • Tetragonal, Inline graphic

  • a = 3.7022 (5) Å

  • c = 8.2137 (12) Å

  • V = 112.58 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 28.18 mm−1

  • T = 295 K

  • 0.12 × 0.11 × 0.01 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (SHELXTL; Sheldrick, 2008) T min = 0.117, T max = 0.718

  • 1906 measured reflections

  • 181 independent reflections

  • 178 reflections with I > 2σ(I)

  • R int = 0.125

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.081

  • S = 1.17

  • 181 reflections

  • 10 parameters

  • Δρmax = 1.95 e Å−3

  • Δρmin = −2.53 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031559/wm2247sup1.cif

e-65-00i68-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031559/wm2247Isup2.hkl

e-65-00i68-Isup2.hkl (9.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ti—Ge 2.7570 (10)
Ti—Sbi 2.8452 (7)
Ti—Sb 3.0129 (14)
Ge—Geii 2.6179 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The Natural Sciences and Engineering Research Council of Canada supported this work.

supplementary crystallographic information

Comment

After a report of the ternary antimonide ZrGeSb (Lam & Mar, 1997), the corresponding Ti and Hf analogues were later described in a conference proceeding, but full crystallographic details have not been forthcoming (Dashjav & Kleinke, 2002). The complete structure of TiGeSb, which is absent in the Ti—Ge—Sb phase diagram at 670 K (Kozlov & Pavlyuk, 2004) but was prepared here at 1273 K, is presented. Common to many equiatomic compounds of the formulation MAB (M = large transition-metal atom; A, B = main group atoms), TiGeSb adopts the PbFCl- or ZrSiS-type structure, among other names (Tremel & Hoffmann, 1987). Square nets of each type of atom, with the Ge net being twice as dense as the other two, are stacked along the c axis (Fig. 1). The Zr atoms are nine-coordinate, centred within monocapped square antiprisms. The Ge–Ge distances are 0.13 Å longer than the sum of the Pauling metallic radii (2.48 Å; Pauling, 1960), indicative of weak polyanionic bonding. The solid solutions ZrGexSb1-x and HfGexSb1-x (up to x = 0.2) form related orthorhombic PbCl2-type structures (Soheilnia et al., 2003), whereas TiGexSb1-x adopts a NiAs-type structure (Kozlov & Pavlyuk, 2004).

Experimental

A 0.25 g mixture of Ti (99.98%, Cerac), Ge (99.999%, Cerac), and Sb (99.995%, Aldrich) powders in a 1:1:3 molar ratio was placed in an evacuated fused-silica tube. The tube was heated at 873 K for 2 d and 1273 K for 2 d. Silver plate-shaped crystals were obtained, which were found by semiquantitative energy-dispersive X-ray (EDX) analysis to have a composition (at%) of 32 (2)% Ti, 35 (2)% Ge, and 33 (2)% Sb, in good agreement with the formula TiGeSb.

Refinement

Analysis of Weissenberg photographs on a plate-shaped crystal, subsequently transferred to the four-circle diffractometer, established Laue symmetry 4/mmm and provided approximate cell parameters of a = 3.71 Å and c = 8.22 Å. In the final Fourier map based on origin choice 2 of space group P4/nmm the maximum peak and deepest hole are located 0.67 Å and 0.02 Å, respectively, from the Sb atom.

Figures

Fig. 1.

Fig. 1.

Projection of the TiGeSb structure approximately along the a axis. Displacement ellipsoids are drawn at the 90% probability level.

Crystal data

TiGeSb Dx = 7.146 Mg m3
Mr = 242.24 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmm Cell parameters from 24 reflections
Hall symbol: -P 4a 2a θ = 11.0–23.3°
a = 3.7022 (5) Å µ = 28.18 mm1
c = 8.2137 (12) Å T = 295 K
V = 112.58 (3) Å3 Plate, silver
Z = 2 0.12 × 0.11 × 0.01 mm
F(000) = 210

Data collection

Enraf–Nonius CAD-4 diffractometer 178 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.125
graphite θmax = 34.8°, θmin = 2.5°
θ/2θ scans h = −5→5
Absorption correction: numerical (SHELXTL; Sheldrick, 2008) k = −5→5
Tmin = 0.117, Tmax = 0.718 l = −13→13
1906 measured reflections 3 standard reflections every 120 min
181 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.044P)2 + 0.3679P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max < 0.001
S = 1.17 Δρmax = 1.95 e Å3
181 reflections Δρmin = −2.53 e Å3
10 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.038 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ti 0.2500 0.2500 0.24875 (16) 0.0054 (3)
Ge 0.7500 0.2500 0.0000 0.0063 (3)
Sb 0.2500 0.2500 0.61556 (6) 0.0063 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ti 0.0060 (4) 0.0060 (4) 0.0043 (6) 0.000 0.000 0.000
Ge 0.0065 (4) 0.0065 (4) 0.0059 (4) 0.000 0.000 0.000
Sb 0.0056 (3) 0.0056 (3) 0.0076 (4) 0.000 0.000 0.000

Geometric parameters (Å, °)

Ti—Gei 2.7570 (10) Ge—Geix 2.6179 (3)
Ti—Geii 2.7570 (10) Ge—Tii 2.7570 (10)
Ti—Geiii 2.7570 (10) Ge—Tix 2.7570 (10)
Ti—Ge 2.7570 (10) Ge—Tiiii 2.7570 (10)
Ti—Sbiv 2.8452 (7) Sb—Tiiv 2.8452 (7)
Ti—Sbv 2.8452 (7) Sb—Tiv 2.8452 (7)
Ti—Sbvi 2.8452 (7) Sb—Tivi 2.8452 (7)
Ti—Sbvii 2.8452 (7) Sb—Tivii 2.8452 (7)
Ti—Sb 3.0129 (14) Sb—Sbv 3.2337 (7)
Ge—Geviii 2.6179 (4) Sb—Sbiv 3.2337 (7)
Ge—Gei 2.6179 (4) Sb—Sbvii 3.2337 (7)
Ge—Geiii 2.6179 (4) Sb—Sbvi 3.2337 (7)
Gei—Ti—Geii 56.69 (2) Tii—Ge—Tix 123.31 (2)
Gei—Ti—Geiii 84.35 (4) Geviii—Ge—Ti 118.344 (11)
Geii—Ti—Geiii 56.69 (2) Gei—Ge—Ti 61.656 (11)
Gei—Ti—Ge 56.69 (2) Geiii—Ge—Ti 61.656 (11)
Geii—Ti—Ge 84.35 (4) Geix—Ge—Ti 118.344 (11)
Geiii—Ti—Ge 56.69 (2) Tii—Ge—Ti 123.31 (2)
Gei—Ti—Sbiv 136.65 (2) Tix—Ge—Ti 84.35 (4)
Geii—Ti—Sbiv 136.65 (2) Geviii—Ge—Tiiii 61.656 (11)
Geiii—Ti—Sbiv 81.574 (14) Gei—Ge—Tiiii 118.344 (11)
Ge—Ti—Sbiv 81.574 (14) Geiii—Ge—Tiiii 61.656 (11)
Gei—Ti—Sbv 81.574 (14) Geix—Ge—Tiiii 118.344 (11)
Geii—Ti—Sbv 81.574 (14) Tii—Ge—Tiiii 84.35 (4)
Geiii—Ti—Sbv 136.65 (2) Tix—Ge—Tiiii 123.31 (2)
Ge—Ti—Sbv 136.65 (2) Ti—Ge—Tiiii 123.31 (2)
Sbiv—Ti—Sbv 133.88 (5) Tiiv—Sb—Tiv 133.88 (5)
Gei—Ti—Sbvi 136.65 (2) Tiiv—Sb—Tivi 81.17 (2)
Geii—Ti—Sbvi 81.574 (14) Tiv—Sb—Tivi 81.17 (2)
Geiii—Ti—Sbvi 81.574 (14) Tiiv—Sb—Tivii 81.17 (2)
Ge—Ti—Sbvi 136.65 (2) Tiv—Sb—Tivii 81.17 (2)
Sbiv—Ti—Sbvi 81.17 (2) Tivi—Sb—Tivii 133.88 (5)
Sbv—Ti—Sbvi 81.17 (2) Tiiv—Sb—Ti 113.06 (3)
Gei—Ti—Sbvii 81.574 (14) Tiv—Sb—Ti 113.06 (3)
Geii—Ti—Sbvii 136.65 (2) Tivi—Sb—Ti 113.06 (3)
Geiii—Ti—Sbvii 136.65 (2) Tivii—Sb—Ti 113.06 (3)
Ge—Ti—Sbvii 81.574 (14) Tiiv—Sb—Sbv 167.11 (4)
Sbiv—Ti—Sbvii 81.17 (2) Tiv—Sb—Sbv 59.01 (3)
Sbv—Ti—Sbvii 81.17 (2) Tivi—Sb—Sbv 103.295 (14)
Sbvi—Ti—Sbvii 133.88 (5) Tivii—Sb—Sbv 103.295 (14)
Gei—Ti—Sb 137.823 (19) Ti—Sb—Sbv 54.051 (16)
Geii—Ti—Sb 137.823 (19) Tiiv—Sb—Sbiv 59.01 (3)
Geiii—Ti—Sb 137.823 (19) Tiv—Sb—Sbiv 167.11 (4)
Ge—Ti—Sb 137.823 (19) Tivi—Sb—Sbiv 103.295 (14)
Sbiv—Ti—Sb 66.94 (3) Tivii—Sb—Sbiv 103.295 (14)
Sbv—Ti—Sb 66.94 (3) Ti—Sb—Sbiv 54.051 (16)
Sbvi—Ti—Sb 66.94 (3) Sbv—Sb—Sbiv 108.10 (3)
Sbvii—Ti—Sb 66.94 (3) Tiiv—Sb—Sbvii 103.295 (14)
Geviii—Ge—Gei 180.0 Tiv—Sb—Sbvii 103.295 (14)
Geviii—Ge—Geiii 90.0 Tivi—Sb—Sbvii 167.11 (4)
Gei—Ge—Geiii 90.0 Tivii—Sb—Sbvii 59.01 (3)
Geviii—Ge—Geix 90.0 Ti—Sb—Sbvii 54.051 (16)
Gei—Ge—Geix 90.0 Sbv—Sb—Sbvii 69.840 (16)
Geiii—Ge—Geix 180.0 Sbiv—Sb—Sbvii 69.840 (16)
Geviii—Ge—Tii 118.344 (11) Tiiv—Sb—Sbvi 103.295 (14)
Gei—Ge—Tii 61.656 (11) Tiv—Sb—Sbvi 103.295 (14)
Geiii—Ge—Tii 118.344 (11) Tivi—Sb—Sbvi 59.01 (3)
Geix—Ge—Tii 61.656 (11) Tivii—Sb—Sbvi 167.11 (4)
Geviii—Ge—Tix 61.656 (11) Ti—Sb—Sbvi 54.051 (16)
Gei—Ge—Tix 118.344 (11) Sbv—Sb—Sbvi 69.840 (16)
Geiii—Ge—Tix 118.344 (11) Sbiv—Sb—Sbvi 69.840 (16)
Geix—Ge—Tix 61.656 (11) Sbvii—Sb—Sbvi 108.10 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z+1; (vi) −x, −y+1, −z+1; (vii) −x+1, −y, −z+1; (viii) −x+2, −y+1, −z; (ix) −x+2, −y, −z; (x) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2247).

References

  1. Dashjav, E. & Kleinke, H. (2002). Z. Anorg. Allg. Chem.628, 2176.
  2. Dowty, E. (1999). ATOMS Shape Software, Kingsport, Tennessee, USA.
  3. Enraf–Nonius (1993). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Kozlov, A. Yu. & Pavlyuk, V. V. (2004). J. Alloys Compd, 367, 76–79.
  6. Lam, R. & Mar, A. (1997). J. Solid State Chem.134, 388–394.
  7. Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Soheilnia, N., Assoud, A. & Kleinke, H. (2003). Inorg. Chem.42, 7319–7325. [DOI] [PubMed]
  10. Tremel, W. & Hoffmann, M. (1987). J. Am. Chem. Soc.109, 124–140.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031559/wm2247sup1.cif

e-65-00i68-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031559/wm2247Isup2.hkl

e-65-00i68-Isup2.hkl (9.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES