Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):m1150. doi: 10.1107/S1600536809032358

Dichloridobis(2-dimethyl­amino-1,10-phenanthroline)cadmium(II)

Hong Liang Li a,*
PMCID: PMC2969892  PMID: 21577483

Abstract

In the title complex, [CdCl2(C14H13N3)2], the CdII ion lies on a twofold rotation axis and assumes a distorted octa­hedral CdN4Cl2 coordination geometry. There is a π–π stacking inter­action between the symmetry-related 1,10-phenanthroline ligands with a centroid–centroid distance of 3.5578 (16) Å and a perpendicular distance of 3.445 (su?) Å between the relevant rings.

Related literature

For background to the use of 1,10-phenanthroline derivatives in coordination chemistry, see: Liu et al. (2008). For a related structure, see: Zhang et al. (2008).graphic file with name e-65-m1150-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C14H13N3)2]

  • M r = 629.85

  • Monoclinic, Inline graphic

  • a = 17.161 (2) Å

  • b = 9.3572 (12) Å

  • c = 16.805 (2) Å

  • β = 110.343 (2)°

  • V = 2530.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.36 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.692, T max = 0.834

  • 7147 measured reflections

  • 2741 independent reflections

  • 2512 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.078

  • S = 1.04

  • 2741 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032358/bt5029sup1.cif

e-65-m1150-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032358/bt5029Isup2.hkl

e-65-m1150-Isup2.hkl (134.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008), and only one complex with 2-(dimethyl)amine-1,10-phenanthroline as ligand has been published (Zhang et al., 2008) so far. Now the crystal structure of title complex, which is the second complex dealing with 2-(dimethyl)amine-1,10-phenanthroline as ligand, is reported.

Fig. 1 and Table 1 show the coordination structure, with the Cd centre located on a crystallographic twofold axis. It is in a distorted octahedral geometry. There is a π-π stacking interaction involving symmetry related 1,10-phenanthroline ligands, with the relevant distances being Cg1···Cg2i = 3.5578 (16) Å and Cg1···Cg2iperp = 3.445 Å and α = 3.82° [symmetry code: (i) 1-X, -Y, -Z; Cg1 and Cg2 are the centroids of C1C2C5-C7/N2 ring and C6—C11 ring, respectively; Cg1···Cg21perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral between ring plane Cg1 and ring plane Cg2i].

Experimental

10 ml me thanol solution of 2-(dimethyl)amine-1,10-phenanthroline (0.1438 g, 0.644 mmol) was added into 5 ml H2O solution of cadmium chloride (0.1485 g, 0.650 mmol), and the mixed solution was stirred for a few minutes. The yellow single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Coordination diagram of title complex with atom-numbering scheme for only asymmetric unit, and displacement ellipsoids being at the 30% probability level

Crystal data

[CdCl2(C14H13N3)2] F(000) = 1272
Mr = 629.85 Dx = 1.653 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3730 reflections
a = 17.161 (2) Å θ = 2.5–27.9°
b = 9.3572 (12) Å µ = 1.11 mm1
c = 16.805 (2) Å T = 298 K
β = 110.343 (2)° Block, yellow
V = 2530.2 (6) Å3 0.36 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2741 independent reflections
Radiation source: fine-focus sealed tube 2512 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −21→21
Tmin = 0.692, Tmax = 0.834 k = −6→11
7147 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.8626P] where P = (Fo2 + 2Fc2)/3
2741 reflections (Δ/σ)max = 0.002
170 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.53071 (18) −0.2662 (3) 0.14483 (19) 0.0453 (6)
H1 0.5561 −0.3519 0.1680 0.054*
C2 0.55652 (14) −0.1339 (3) 0.18970 (16) 0.0366 (5)
C3 0.6672 (2) −0.2607 (3) 0.3007 (2) 0.0597 (8)
H3A 0.6275 −0.3371 0.2899 0.090*
H3B 0.6916 −0.2451 0.3608 0.090*
H3C 0.7099 −0.2855 0.2785 0.090*
C4 0.67199 (15) −0.0021 (3) 0.29048 (17) 0.0442 (6)
H4A 0.6495 0.0734 0.2503 0.066*
H4B 0.7293 −0.0169 0.2972 0.066*
H4C 0.6679 0.0237 0.3442 0.066*
C5 0.46892 (18) −0.2641 (3) 0.0683 (2) 0.0468 (6)
H5 0.4529 −0.3484 0.0377 0.056*
C6 0.42857 (14) −0.1347 (3) 0.03479 (15) 0.0378 (5)
C7 0.45301 (13) −0.0134 (2) 0.08600 (14) 0.0324 (5)
C8 0.36608 (16) −0.1257 (3) −0.04727 (16) 0.0483 (7)
H8 0.3509 −0.2077 −0.0804 0.058*
C9 0.32884 (17) −0.0021 (3) −0.07762 (17) 0.0507 (7)
H9 0.2884 0.0010 −0.1315 0.061*
C10 0.35021 (14) 0.1243 (3) −0.02876 (15) 0.0410 (6)
C11 0.40983 (14) 0.1189 (3) 0.05419 (14) 0.0346 (5)
C12 0.39202 (17) 0.3585 (3) 0.07410 (18) 0.0488 (6)
H12 0.4049 0.4381 0.1094 0.059*
C13 0.31509 (18) 0.2587 (4) −0.05904 (18) 0.0499 (7)
H13 0.2766 0.2671 −0.1137 0.060*
C14 0.33721 (18) 0.3755 (3) −0.00872 (18) 0.0531 (7)
H14 0.3163 0.4652 −0.0290 0.064*
Cd1 0.5000 0.20663 (2) 0.2500 0.03387 (10)
Cl1 0.61434 (4) 0.36432 (7) 0.22647 (5) 0.05136 (18)
N1 0.62589 (13) −0.1317 (2) 0.26011 (15) 0.0465 (5)
N2 0.51504 (11) −0.0126 (2) 0.16313 (12) 0.0339 (4)
N3 0.42685 (13) 0.2347 (2) 0.10524 (14) 0.0396 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0450 (15) 0.0335 (13) 0.0594 (17) 0.0015 (11) 0.0208 (13) 0.0007 (12)
C2 0.0310 (11) 0.0353 (12) 0.0446 (13) −0.0017 (9) 0.0144 (10) −0.0014 (10)
C3 0.0533 (18) 0.0496 (16) 0.068 (2) 0.0181 (14) 0.0110 (16) 0.0104 (15)
C4 0.0343 (12) 0.0454 (14) 0.0472 (14) 0.0030 (11) 0.0069 (11) −0.0062 (12)
C5 0.0462 (15) 0.0371 (13) 0.0596 (17) −0.0105 (11) 0.0216 (14) −0.0121 (12)
C6 0.0340 (12) 0.0406 (13) 0.0390 (12) −0.0075 (10) 0.0130 (10) −0.0056 (11)
C7 0.0285 (11) 0.0375 (12) 0.0322 (11) −0.0063 (9) 0.0117 (9) −0.0011 (9)
C8 0.0455 (14) 0.0565 (17) 0.0404 (14) −0.0104 (13) 0.0118 (12) −0.0146 (13)
C9 0.0451 (15) 0.0664 (19) 0.0334 (13) −0.0081 (13) 0.0045 (11) −0.0037 (13)
C10 0.0317 (12) 0.0576 (16) 0.0340 (12) −0.0023 (11) 0.0117 (10) 0.0045 (12)
C11 0.0303 (11) 0.0406 (13) 0.0340 (11) −0.0070 (10) 0.0124 (9) −0.0019 (10)
C12 0.0505 (15) 0.0382 (14) 0.0493 (15) 0.0040 (12) 0.0066 (12) 0.0062 (12)
C13 0.0396 (14) 0.0670 (18) 0.0368 (14) 0.0022 (13) 0.0053 (11) 0.0113 (13)
C14 0.0520 (16) 0.0485 (16) 0.0535 (16) 0.0080 (13) 0.0115 (13) 0.0168 (14)
Cd1 0.03261 (15) 0.02812 (14) 0.03351 (15) 0.000 0.00217 (10) 0.000
Cl1 0.0486 (4) 0.0394 (4) 0.0652 (4) −0.0099 (3) 0.0188 (3) −0.0034 (3)
N1 0.0360 (11) 0.0370 (12) 0.0562 (13) 0.0051 (9) 0.0029 (10) 0.0034 (10)
N2 0.0299 (9) 0.0336 (10) 0.0356 (10) −0.0019 (8) 0.0080 (8) −0.0006 (8)
N3 0.0395 (11) 0.0342 (10) 0.0406 (12) 0.0013 (9) 0.0083 (9) 0.0032 (9)

Geometric parameters (Å, °)

C1—C5 1.353 (4) C8—C9 1.334 (4)
C1—C2 1.437 (4) C8—H8 0.9300
C1—H1 0.9300 C9—C10 1.413 (4)
C2—N2 1.332 (3) C9—H9 0.9300
C2—N1 1.356 (3) C10—C13 1.412 (4)
C3—N1 1.445 (4) C10—C11 1.415 (3)
C3—H3A 0.9600 C11—N3 1.349 (3)
C3—H3B 0.9600 C12—N3 1.325 (3)
C3—H3C 0.9600 C12—C14 1.392 (4)
C4—N1 1.441 (3) C12—H12 0.9300
C4—H4A 0.9600 C13—C14 1.353 (4)
C4—H4B 0.9600 C13—H13 0.9300
C4—H4C 0.9600 C14—H14 0.9300
C5—C6 1.411 (4) Cd1—N3i 2.332 (2)
C5—H5 0.9300 Cd1—N3 2.332 (2)
C6—C7 1.398 (3) Cd1—N2i 2.582 (2)
C6—C8 1.425 (3) Cd1—N2 2.582 (2)
C7—N2 1.362 (3) Cd1—Cl1 2.5928 (7)
C7—C11 1.446 (3) Cd1—Cl1i 2.5928 (7)
C5—C1—C2 118.9 (3) N3—C11—C10 121.4 (2)
C5—C1—H1 120.6 N3—C11—C7 118.8 (2)
C2—C1—H1 120.6 C10—C11—C7 119.8 (2)
N2—C2—N1 118.9 (2) N3—C12—C14 123.4 (3)
N2—C2—C1 121.8 (2) N3—C12—H12 118.3
N1—C2—C1 119.2 (2) C14—C12—H12 118.3
N1—C3—H3A 109.5 C14—C13—C10 120.2 (2)
N1—C3—H3B 109.5 C14—C13—H13 119.9
H3A—C3—H3B 109.5 C10—C13—H13 119.9
N1—C3—H3C 109.5 C13—C14—C12 118.6 (3)
H3A—C3—H3C 109.5 C13—C14—H14 120.7
H3B—C3—H3C 109.5 C12—C14—H14 120.7
N1—C4—H4A 109.5 N3i—Cd1—N3 167.08 (10)
N1—C4—H4B 109.5 N3i—Cd1—N2i 67.85 (7)
H4A—C4—H4B 109.5 N3—Cd1—N2i 123.76 (7)
N1—C4—H4C 109.5 N3i—Cd1—N2 123.76 (7)
H4A—C4—H4C 109.5 N3—Cd1—N2 67.85 (7)
H4B—C4—H4C 109.5 N2i—Cd1—N2 74.81 (9)
C1—C5—C6 120.4 (3) N3i—Cd1—Cl1 86.19 (6)
C1—C5—H5 119.8 N3—Cd1—Cl1 86.47 (6)
C6—C5—H5 119.8 N2i—Cd1—Cl1 140.17 (4)
C7—C6—C5 116.8 (2) N2—Cd1—Cl1 97.82 (5)
C7—C6—C8 120.8 (2) N3i—Cd1—Cl1i 86.47 (6)
C5—C6—C8 122.5 (2) N3—Cd1—Cl1i 86.19 (6)
N2—C7—C6 123.9 (2) N2i—Cd1—Cl1i 97.82 (5)
N2—C7—C11 118.5 (2) N2—Cd1—Cl1i 140.17 (4)
C6—C7—C11 117.5 (2) Cl1—Cd1—Cl1i 110.63 (3)
C9—C8—C6 121.4 (3) C2—N1—C4 122.0 (2)
C9—C8—H8 119.3 C2—N1—C3 122.5 (2)
C6—C8—H8 119.3 C4—N1—C3 114.6 (2)
C8—C9—C10 120.7 (2) C2—N2—C7 117.7 (2)
C8—C9—H9 119.7 C2—N2—Cd1 129.38 (16)
C10—C9—H9 119.7 C7—N2—Cd1 110.11 (14)
C13—C10—C11 117.3 (3) C12—N3—C11 118.9 (2)
C13—C10—C9 123.0 (2) C12—N3—Cd1 121.04 (18)
C11—C10—C9 119.7 (2) C11—N3—Cd1 119.46 (16)
C5—C1—C2—N2 8.2 (4) N1—C2—N2—Cd1 −30.5 (3)
C5—C1—C2—N1 −170.5 (3) C1—C2—N2—Cd1 150.79 (19)
C2—C1—C5—C6 −2.3 (4) C6—C7—N2—C2 2.4 (3)
C1—C5—C6—C7 −2.9 (4) C11—C7—N2—C2 −177.1 (2)
C1—C5—C6—C8 176.8 (3) C6—C7—N2—Cd1 −160.33 (18)
C5—C6—C7—N2 3.1 (3) C11—C7—N2—Cd1 20.2 (2)
C8—C6—C7—N2 −176.6 (2) N3i—Cd1—N2—C2 7.3 (2)
C5—C6—C7—C11 −177.4 (2) N3—Cd1—N2—C2 −179.2 (2)
C8—C6—C7—C11 2.9 (3) N2i—Cd1—N2—C2 −42.08 (16)
C7—C6—C8—C9 −0.3 (4) Cl1—Cd1—N2—C2 97.91 (18)
C5—C6—C8—C9 −180.0 (3) Cl1i—Cd1—N2—C2 −126.03 (17)
C6—C8—C9—C10 −0.3 (4) N3i—Cd1—N2—C7 167.33 (14)
C8—C9—C10—C13 177.5 (3) N3—Cd1—N2—C7 −19.10 (14)
C8—C9—C10—C11 −2.0 (4) N2i—Cd1—N2—C7 117.98 (17)
C13—C10—C11—N3 6.0 (3) Cl1—Cd1—N2—C7 −102.02 (14)
C9—C10—C11—N3 −174.5 (2) Cl1i—Cd1—N2—C7 34.03 (18)
C13—C10—C11—C7 −174.8 (2) C14—C12—N3—C11 1.1 (4)
C9—C10—C11—C7 4.7 (4) C14—C12—N3—Cd1 −169.7 (2)
N2—C7—C11—N3 −6.3 (3) C10—C11—N3—C12 −5.8 (4)
C6—C7—C11—N3 174.1 (2) C7—C11—N3—C12 175.0 (2)
N2—C7—C11—C10 174.5 (2) C10—C11—N3—Cd1 165.14 (17)
C6—C7—C11—C10 −5.1 (3) C7—C11—N3—Cd1 −14.1 (3)
C11—C10—C13—C14 −1.5 (4) N3i—Cd1—N3—C12 −16.5 (2)
C9—C10—C13—C14 179.0 (3) N2i—Cd1—N3—C12 135.9 (2)
C10—C13—C14—C12 −2.9 (4) N2—Cd1—N3—C12 −171.9 (2)
N3—C12—C14—C13 3.2 (5) Cl1—Cd1—N3—C12 −72.0 (2)
N2—C2—N1—C4 −21.3 (4) Cl1i—Cd1—N3—C12 39.0 (2)
C1—C2—N1—C4 157.4 (2) N3i—Cd1—N3—C11 172.75 (18)
N2—C2—N1—C3 170.2 (3) N2i—Cd1—N3—C11 −34.9 (2)
C1—C2—N1—C3 −11.0 (4) N2—Cd1—N3—C11 17.35 (17)
N1—C2—N2—C7 170.7 (2) Cl1—Cd1—N3—C11 117.28 (18)
C1—C2—N2—C7 −8.0 (3) Cl1i—Cd1—N3—C11 −131.75 (18)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5029).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [DOI] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032358/bt5029sup1.cif

e-65-m1150-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032358/bt5029Isup2.hkl

e-65-m1150-Isup2.hkl (134.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES