Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 22;65(Pt 9):o2199. doi: 10.1107/S1600536809032796

2,3-O-(S)-Benzyl­idene-2-C-methyl-d-ribono-1,4-lactone

K Victoria Booth a,*, Sarah F Jenkinson a, George W J Fleet a, David J Watkin b
PMCID: PMC2969893  PMID: 21577602

Abstract

The crystal structure of the title compound, C13H14O5, establishes (i) the (S) – rather than (R) – configuration at the acetal carbon and (ii) that both the acetal and the lactone form five- rather than six-membered rings; the absolute configuration is determined by the use of 2-C-methyl-d-ribono-1,4-lactone as the starting material. The compound consists of hydrogen-bonded chains of mol­ecules running along the a axis; there are no unusual packing features. Only classical hydrogen bonding has been considered.

Related literature

For the synthesis of sugar lactones and their use as building blocks, see: Lundt & Madsen (2001); Hotchkiss, Soengas et al. (2007); Booth et al. (2008, 2009); Jenkinson et al. (2007); Hotchkiss, Kato et al. (2007); Chen & Joullie (1984); Dho et al. (1986); Baird et al. (1987). For the structures of benzyl­idene acetals, see: Baggett et al. (1985); Zinner et al. (1968).graphic file with name e-65-o2199-scheme1.jpg

Experimental

Crystal data

  • C13H14O5

  • M r = 250.25

  • Orthorhombic, Inline graphic

  • a = 8.6170 (2) Å

  • b = 10.4615 (3) Å

  • c = 13.2693 (5) Å

  • V = 1196.18 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.50 × 0.40 × 0.40 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.91, T max = 0.96

  • 8306 measured reflections

  • 1547 independent reflections

  • 1369 reflections with I > 2.0σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.075

  • S = 0.96

  • 1547 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Nonius, 1997-2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032796/lh2882sup1.cif

e-65-o2199-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032796/lh2882Isup2.hkl

e-65-o2199-Isup2.hkl (77.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H181⋯O9i 0.84 2.02 2.801 (3) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

We would like to thank the Chemical Crystallography Department and ALT at Oxford University for use of the difractometers.

supplementary crystallographic information

Comment

Lactones have been widely used for the enantiospecific synthesis of complex chiral targets (Lundt & Madsen, 2001). 2-C-Methyl-D-ribono-1,4-lactone 3 (Fig. 1) has recently become a readily available starting material (Hotchkiss, Soengas et al., 2007; Booth et al., 2008) and has been used in the synthesis of doubly branched sugars (Booth et al., 2009), 2-C-methyl nucleosides (Jenkinson et al., 2007) and complex piperidines (Hotchkiss, Kato et al., 2007). D-Ribono-1,4-lactone 5 with benzaldehyde and concentrated aqueous hydrochloric acid forms a 5 ring benzylidene acetal - 6-ring lactone 6 (Fig. 1). The structure of 6 was established by X-ray crystallographic analysis (Baggett et al., 1985) which corrected the original erroneous 6 ring benzylidene acetal - 5-ring lactone structure proposed (Zinner et al., 1968). The protected 1,5-lactone 6 leaves only the C-2 OH unprotected and has been widely used as a chiron (Chen & Joullie, 1984; Dho et al., 1986; Baird et al., 1987). It was hoped that the analogous reaction with 2-C-methyl lactone 3 would form the analogous lactone 4; however, treatment of 3 with benzaldehyde and concentrated aqueous hydrochloric acid gave as the major product a mixture of epimeric 1,4-lactones 1 and 2; although it was not possible to separate 1 and 2 by chromatography, suitable crystals of the major component 1 were obtained and the structure of a 5 ring benzylidene acetal - 5-ring lactone, together with the (S) stereochemistry at the acetal carbon, was firmly established (Fig. 2).

The compound consists of H—O···H hydrogen bonded chains of molecules running along the a-axis (Fig. 3); there are no unusual packing features. Only classical hydrogen bonding has been considered.

Experimental

The title compound was recrystallized from a mixture of diethyl ether and petrol by slow evaporation: m.p. 369–372 K; [α]D18 -38.7 (c, 0.86 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram for the title compound projected along the c-axis. Hydrogen bonds are indicated by dotted lines.

Crystal data

C13H14O5 F(000) = 528
Mr = 250.25 Dx = 1.390 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1493 reflections
a = 8.6170 (2) Å θ = 5–27°
b = 10.4615 (3) Å µ = 0.11 mm1
c = 13.2693 (5) Å T = 150 K
V = 1196.18 (6) Å3 Block, colourless
Z = 4 0.50 × 0.40 × 0.40 mm

Data collection

Nonius KappaCCD diffractometer 1369 reflections with I > 2.0σ(I)
graphite Rint = 0.036
ω scans θmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −11→11
Tmin = 0.91, Tmax = 0.96 k = −13→13
8306 measured reflections l = −17→17
1547 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.075 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.33P] , where P = (max(Fo2,0) + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.0003
1547 reflections Δρmax = 0.21 e Å3
163 parameters Δρmin = −0.18 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20180 (16) 0.58639 (12) 0.35659 (10) 0.0315
C2 0.0428 (2) 0.53792 (18) 0.36504 (15) 0.0308
C3 0.0572 (2) 0.41273 (17) 0.42367 (14) 0.0290
O4 0.07235 (15) 0.30513 (13) 0.35853 (12) 0.0348
C5 0.2332 (2) 0.27989 (17) 0.34757 (14) 0.0282
O6 0.30017 (15) 0.31402 (12) 0.44177 (10) 0.0292
C7 0.2137 (2) 0.42186 (16) 0.47876 (13) 0.0271
C8 0.2876 (2) 0.54172 (17) 0.43333 (14) 0.0284
O9 0.41116 (16) 0.58753 (14) 0.45530 (11) 0.0382
C10 0.2143 (3) 0.4195 (2) 0.59243 (14) 0.0403
C11 0.2581 (2) 0.14034 (17) 0.32652 (14) 0.0278
C12 0.3486 (2) 0.10164 (19) 0.24540 (15) 0.0314
C13 0.3662 (2) −0.0280 (2) 0.22427 (16) 0.0349
C14 0.2945 (3) −0.11716 (19) 0.28505 (15) 0.0358
C15 0.2066 (2) −0.07955 (18) 0.36660 (15) 0.0345
C16 0.1874 (2) 0.04930 (19) 0.38769 (15) 0.0314
C17 −0.0516 (2) 0.63951 (19) 0.41789 (16) 0.0359
O18 0.02305 (17) 0.66472 (14) 0.51139 (11) 0.0385
H21 0.0028 0.5221 0.2934 0.0368*
H31 −0.0301 0.4024 0.4712 0.0369*
H51 0.2780 0.3352 0.2917 0.0355*
H101 0.3207 0.4225 0.6174 0.0626*
H103 0.1573 0.4942 0.6146 0.0621*
H102 0.1635 0.3404 0.6145 0.0620*
H121 0.3978 0.1652 0.2045 0.0380*
H131 0.4316 −0.0556 0.1653 0.0416*
H141 0.3061 −0.2081 0.2710 0.0428*
H151 0.1588 −0.1422 0.4102 0.0424*
H161 0.1248 0.0765 0.4455 0.0371*
H172 −0.0541 0.7167 0.3741 0.0456*
H171 −0.1605 0.6071 0.4292 0.0454*
H181 −0.0132 0.7294 0.5413 0.0598*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0387 (7) 0.0245 (6) 0.0313 (7) −0.0037 (6) 0.0002 (6) 0.0025 (5)
C2 0.0337 (9) 0.0244 (9) 0.0343 (10) 0.0014 (8) −0.0037 (8) −0.0015 (8)
C3 0.0286 (9) 0.0233 (9) 0.0352 (10) −0.0005 (8) −0.0006 (8) −0.0020 (8)
O4 0.0290 (7) 0.0240 (7) 0.0513 (9) 0.0010 (6) −0.0099 (7) −0.0079 (6)
C5 0.0307 (9) 0.0232 (9) 0.0306 (10) −0.0008 (7) −0.0024 (8) −0.0019 (7)
O6 0.0303 (6) 0.0239 (6) 0.0335 (7) 0.0014 (6) −0.0054 (6) −0.0044 (5)
C7 0.0296 (9) 0.0226 (8) 0.0290 (9) −0.0003 (8) 0.0000 (8) −0.0009 (7)
C8 0.0335 (10) 0.0226 (8) 0.0292 (9) −0.0013 (8) 0.0028 (8) −0.0053 (7)
O9 0.0341 (7) 0.0322 (7) 0.0482 (8) −0.0095 (6) −0.0005 (7) −0.0095 (7)
C10 0.0500 (12) 0.0428 (12) 0.0282 (10) 0.0028 (11) 0.0006 (9) 0.0014 (9)
C11 0.0312 (9) 0.0217 (8) 0.0307 (9) −0.0016 (7) −0.0040 (8) −0.0008 (7)
C12 0.0320 (9) 0.0276 (9) 0.0345 (10) −0.0016 (8) 0.0004 (8) 0.0022 (8)
C13 0.0372 (10) 0.0314 (10) 0.0360 (11) 0.0031 (9) 0.0022 (9) −0.0041 (8)
C14 0.0418 (11) 0.0245 (9) 0.0411 (11) 0.0017 (9) −0.0031 (10) −0.0014 (8)
C15 0.0414 (10) 0.0251 (9) 0.0370 (10) −0.0042 (9) −0.0013 (9) 0.0017 (8)
C16 0.0350 (10) 0.0283 (9) 0.0308 (9) −0.0015 (8) 0.0014 (8) 0.0013 (8)
C17 0.0382 (10) 0.0291 (10) 0.0406 (11) 0.0050 (9) −0.0079 (10) −0.0051 (9)
O18 0.0442 (8) 0.0326 (7) 0.0385 (8) 0.0078 (6) −0.0058 (7) −0.0091 (6)

Geometric parameters (Å, °)

O1—C2 1.465 (2) C10—H103 0.968
O1—C8 1.342 (2) C10—H102 0.981
C2—C3 1.528 (3) C11—C12 1.390 (3)
C2—C17 1.511 (3) C11—C16 1.392 (3)
C2—H21 1.025 C12—C13 1.394 (3)
C3—O4 1.425 (2) C12—H121 0.957
C3—C7 1.537 (3) C13—C14 1.379 (3)
C3—H31 0.988 C13—H131 1.007
O4—C5 1.418 (2) C14—C15 1.379 (3)
C5—O6 1.422 (2) C14—H141 0.974
C5—C11 1.502 (2) C15—C16 1.387 (3)
C5—H51 1.016 C15—H151 0.967
O6—C7 1.438 (2) C16—H161 0.981
C7—C8 1.530 (2) C17—O18 1.422 (2)
C7—C10 1.508 (2) C17—H172 0.995
C8—O9 1.203 (2) C17—H171 1.009
C10—H101 0.975 O18—H181 0.844
C2—O1—C8 109.66 (14) C7—C10—H103 106.8
O1—C2—C3 105.05 (15) H101—C10—H103 110.3
O1—C2—C17 107.19 (15) C7—C10—H102 108.1
C3—C2—C17 114.22 (17) H101—C10—H102 110.2
O1—C2—H21 107.4 H103—C10—H102 111.3
C3—C2—H21 111.2 C5—C11—C12 120.49 (16)
C17—C2—H21 111.3 C5—C11—C16 119.63 (17)
C2—C3—O4 112.06 (15) C12—C11—C16 119.86 (17)
C2—C3—C7 105.08 (15) C11—C12—C13 120.03 (18)
O4—C3—C7 104.91 (14) C11—C12—H121 119.0
C2—C3—H31 110.9 C13—C12—H121 120.9
O4—C3—H31 111.8 C12—C13—C14 119.47 (19)
C7—C3—H31 111.8 C12—C13—H131 119.8
C3—O4—C5 107.37 (13) C14—C13—H131 120.8
O4—C5—O6 105.05 (15) C13—C14—C15 120.82 (19)
O4—C5—C11 109.85 (15) C13—C14—H141 120.1
O6—C5—C11 110.45 (15) C15—C14—H141 119.0
O4—C5—H51 109.9 C14—C15—C16 120.09 (18)
O6—C5—H51 110.1 C14—C15—H151 120.7
C11—C5—H51 111.3 C16—C15—H151 119.2
C5—O6—C7 106.65 (13) C11—C16—C15 119.71 (18)
C3—C7—O6 104.08 (14) C11—C16—H161 119.9
C3—C7—C8 103.21 (15) C15—C16—H161 120.4
O6—C7—C8 107.03 (14) C2—C17—O18 106.96 (16)
C3—C7—C10 118.52 (17) C2—C17—H172 108.2
O6—C7—C10 109.08 (16) O18—C17—H172 111.6
C8—C7—C10 113.95 (16) C2—C17—H171 109.5
C7—C8—O1 110.80 (15) O18—C17—H171 110.7
C7—C8—O9 126.80 (18) H172—C17—H171 109.8
O1—C8—O9 122.17 (17) C17—O18—H181 113.1
C7—C10—H101 110.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H103···O18 0.97 2.53 3.233 (3) 130
C13—H131···O9i 1.01 2.58 3.289 (3) 128
C14—H141···O1ii 0.97 2.59 3.340 (3) 134
O18—H181···O9iii 0.84 2.02 2.801 (3) 153

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2882).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Baggett, N., Buchanan, J. G., Fatah, M. V., Lachut, C. H., McCullough, K. J. & Webber, J. M. (1985). J. Chem. Soc. Chem. Commun. pp. 1826–1827.
  3. Baird, P. D., Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 1785–1791.
  4. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  5. Booth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry19, 2417–2424.
  6. Booth, K. V., Jenkinson, S. F., Best, D., Nieto, F. F., Estevez, R. J., Wormald, M. R., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2009). Tetrahedron Lett.50, 5088–5093.
  7. Chen, S. Y. & Joullie, M. M. (1984). J. Org. Chem.49, 2168–2174.
  8. Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1986). Tetrahedron Lett.27, 3203–3204.
  9. Hotchkiss, D. J., Kato, A., Odell, B., Claridge, T. D. W. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry18, 500–512.
  10. Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett.48, 517–520.
  11. Jenkinson, S. F., Jones, N. A., Moussa, A., Stewart, A. J., Heinz, T. & Fleet, G. W. J. (2007). Tetrahedron Lett.48, 4441–4445.
  12. Lundt, I. & Madsen, R. (2001). Top. Curr. Chem.215, 178–191.
  13. Nonius (1997–2001). COLLECT Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK.
  16. Zinner, H., Voight, H. & Voight, J. (1968). Carbohydr. Res.7, 38–55.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032796/lh2882sup1.cif

e-65-o2199-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032796/lh2882Isup2.hkl

e-65-o2199-Isup2.hkl (77.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES