Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2096. doi: 10.1107/S1600536809030451

Methyl 2-(5-fluoro-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2969894  PMID: 21577512

Abstract

In the title compound, C12H11FO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment [O—S—C—C and C—S—C—C torsion angles = 126.70 (13) and −123.55 (13)°, respectively]. The crystal structure is stabilized by weak non-classical inter­molecular C—H⋯O hydrogen-bond inter­actions. The crystal structure also exhibits aromatic π–π stacking inter­actions between furan/benzene and benzene/benzene rings of adjacent benzofuran ring systems [centroid–centroid distances = 3.8258 (9) and 3.8794 (9) Å] and a weak inter­molecular C—H⋯π ring inter­action.

Related literature

For crystal structures of similar methyl 2-(5-halo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2008a ,b ). For the pharmacological properties of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999).graphic file with name e-65-o2096-scheme1.jpg

Experimental

Crystal data

  • C12H11FO4S

  • M r = 270.27

  • Triclinic, Inline graphic

  • a = 7.7799 (5) Å

  • b = 8.5609 (6) Å

  • c = 10.5592 (7) Å

  • α = 73.834 (1)°

  • β = 80.178 (1)°

  • γ = 67.486 (1)°

  • V = 622.36 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 K

  • 0.60 × 0.40 × 0.40 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 5368 measured reflections

  • 2667 independent reflections

  • 2389 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.089

  • S = 1.08

  • 2667 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030451/jj2003sup1.cif

e-65-o2096-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030451/jj2003Isup2.hkl

e-65-o2096-Isup2.hkl (130.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.39 3.303 (2) 166
C9—H9A⋯O4ii 0.97 2.22 3.179 (2) 168
C9—H9B⋯O1iii 0.97 2.54 3.489 (2) 166
C12—H12A⋯O3iv 0.96 2.60 3.478 (2) 152
C11—H11ACg2v 0.96 2.97 3.93 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg2 is the centroid of the C2–C7 ring.

supplementary crystallographic information

Comment

Molecules containing the benzofuran skeleton have received considerable attention related to their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999). This work is related to our communications on the synthesis and crystal structures of methyl 2-(5-halo-3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, viz. methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a), and methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, methyl 2-(5-fluoro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.006 (1) ° from the least-squares plane defined by the nine constituent atoms (Fig. 1). In the title compound, all of the bond angles and bond distances are in the normal range of related molecules (Choi et al., 2008a, b). The oxygen atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment [O4–S–C1–C8 and C12–S–C1–C8 torsional angles = 126.70 (13)° and -123.55 (13) °, respectively]. Crystal packing is stabilized by weak intermolecular C–H···O hydrogen bond interactions involving the S═O unit with the benzofurn ring (C3–H3···O4i) and a methylene H atom (C9–H9A···O4ii), between the furan ring and methylene H atom (C9–H9B···O1iii) as well as between a methyl H atom of the methylsulfinyl substituent and the C═O unit (C12–H12A···O3iv), respectively (Fig. 2, Table 1). Crystal packing also exhibits aromatic π–π stacking interactions between the furan/benzene and the benzene/benzene rings of neighbouring molecules [Cg1···Cg2vii = 3.8258 (9)Å and Cg2···Cg2vi = 3.8794 (9)Å, where Cg1 and Cg2 are centroids of the furan (C1/C2/C7/O1/C8) and benzene (C2-C7) rings, respectively, Fig. 3]. The molecular packing is further stabilized by a weak, intermolecular C–H···π ring interaction between a methyl H atom of the methoxy group and a benzene ring of a neighbouring molecule (C11–H11A···Cg2v; = 3.927 (3)Å, Table 1).

Experimental

The 77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of methyl 2-(5-fluoro-3-methylsulfanyl-1-benzofuran-2-yl)acetate (254 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate,1:2 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 370-371 K; Rf = 0.4 (hexane-ethyl acetate, 1;2 v/v )]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2 Ueq(C) for the aryl and methylene H atoms, and 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.

Fig. 2.

Fig. 2.

Weak, C–H···O hydrogen bond interactions (dotted lines) in the title compound. [Symmetry code: (i) - x + 1, - y + 1, - z; (ii) - x + 2, - y + 1, - z; (iii) - x + 2, - y + 1, - z + 1; (iv) - x+1, - y + 2, - z.]

Fig. 3.

Fig. 3.

Weak, π–π stacking and C–H···π ring intermoleclar interactions (dotted lines) in the title compound. Cg1 and C2 denote ring centroids for C1/C2/C7/O1/C8 and C2-C7, respectively.[Symmetry code: (v) x, y + 1, z; (vi) - x + 1, - y + 2 , - z + 1; 1-x, 2-y, (vii) - x + 1, - y + 1, - z + 1.]

Crystal data

C12H11FO4S Z = 2
Mr = 270.27 F(000) = 280
Triclinic, P1 Dx = 1.442 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7799 (5) Å Cell parameters from 3896 reflections
b = 8.5609 (6) Å θ = 2.7–27.5°
c = 10.5592 (7) Å µ = 0.28 mm1
α = 73.834 (1)° T = 273 K
β = 80.178 (1)° Block, colorless
γ = 67.486 (1)° 0.60 × 0.40 × 0.40 mm
V = 622.36 (7) Å3

Data collection

Bruker SMART CCD diffractometer 2389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.014
graphite θmax = 27.0°, θmin = 2.0°
Detector resolution: 10.0 pixels mm-1 h = −9→9
φ and ω scans k = −10→10
5368 measured reflections l = −13→13
2667 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: difference Fourier map
wR(F2) = 0.089 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.227P] where P = (Fo2 + 2Fc2)/3
2667 reflections (Δ/σ)max = 0.001
165 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.73212 (5) 0.63256 (5) 0.04928 (3) 0.03039 (12)
F 0.30035 (14) 0.21264 (13) 0.37311 (11) 0.0513 (3)
O1 0.84250 (14) 0.43881 (13) 0.42317 (9) 0.0288 (2)
O2 1.04499 (16) 0.88742 (15) 0.21928 (13) 0.0436 (3)
O3 0.75373 (16) 0.90527 (15) 0.20563 (13) 0.0449 (3)
O4 0.75098 (17) 0.49556 (16) −0.02040 (11) 0.0415 (3)
C1 0.73869 (19) 0.53270 (18) 0.21918 (13) 0.0263 (3)
C2 0.63718 (19) 0.42498 (17) 0.29942 (13) 0.0261 (3)
C3 0.4978 (2) 0.37061 (19) 0.27953 (15) 0.0309 (3)
H3 0.4480 0.4036 0.1981 0.037*
C4 0.4390 (2) 0.26551 (19) 0.38775 (17) 0.0352 (3)
C5 0.5098 (2) 0.2096 (2) 0.51151 (16) 0.0375 (4)
H5 0.4641 0.1377 0.5804 0.045*
C6 0.6489 (2) 0.26217 (19) 0.53113 (15) 0.0342 (3)
H6 0.7000 0.2268 0.6124 0.041*
C7 0.70799 (19) 0.36995 (18) 0.42381 (14) 0.0275 (3)
C8 0.85804 (19) 0.53640 (18) 0.29708 (13) 0.0264 (3)
C9 0.9967 (2) 0.62392 (19) 0.27115 (14) 0.0290 (3)
H9A 1.0886 0.5816 0.2024 0.035*
H9B 1.0611 0.5919 0.3506 0.035*
C10 0.9129 (2) 0.82024 (19) 0.22925 (14) 0.0296 (3)
C11 0.9865 (3) 1.0754 (2) 0.1780 (3) 0.0657 (6)
H11A 0.9333 1.1147 0.0941 0.099*
H11B 1.0924 1.1099 0.1701 0.099*
H11C 0.8950 1.1261 0.2425 0.099*
C12 0.4904 (2) 0.7705 (2) 0.04906 (17) 0.0386 (4)
H12A 0.4625 0.8393 −0.0388 0.058*
H12B 0.4656 0.8458 0.1077 0.058*
H12C 0.4139 0.7000 0.0782 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0313 (2) 0.0392 (2) 0.02016 (18) −0.01352 (15) −0.00616 (13) −0.00224 (14)
F 0.0428 (6) 0.0440 (6) 0.0702 (7) −0.0247 (5) −0.0127 (5) 0.0003 (5)
O1 0.0340 (5) 0.0313 (5) 0.0211 (5) −0.0111 (4) −0.0076 (4) −0.0034 (4)
O2 0.0324 (6) 0.0323 (6) 0.0661 (8) −0.0123 (5) −0.0036 (5) −0.0104 (5)
O3 0.0323 (6) 0.0356 (6) 0.0588 (8) −0.0086 (5) −0.0120 (5) 0.0019 (5)
O4 0.0454 (7) 0.0528 (7) 0.0277 (6) −0.0129 (5) −0.0069 (5) −0.0154 (5)
C1 0.0278 (7) 0.0284 (7) 0.0209 (6) −0.0074 (5) −0.0053 (5) −0.0046 (5)
C2 0.0270 (7) 0.0249 (6) 0.0237 (6) −0.0050 (5) −0.0036 (5) −0.0065 (5)
C3 0.0294 (7) 0.0285 (7) 0.0334 (7) −0.0070 (6) −0.0071 (6) −0.0069 (6)
C4 0.0295 (7) 0.0278 (7) 0.0477 (9) −0.0100 (6) −0.0051 (6) −0.0065 (6)
C5 0.0389 (8) 0.0275 (7) 0.0382 (8) −0.0103 (6) 0.0018 (6) 0.0000 (6)
C6 0.0403 (8) 0.0299 (7) 0.0261 (7) −0.0082 (6) −0.0043 (6) −0.0017 (6)
C7 0.0283 (7) 0.0267 (7) 0.0261 (7) −0.0065 (5) −0.0045 (5) −0.0070 (5)
C8 0.0276 (7) 0.0264 (7) 0.0217 (6) −0.0055 (5) −0.0048 (5) −0.0041 (5)
C9 0.0265 (7) 0.0315 (7) 0.0285 (7) −0.0078 (6) −0.0080 (5) −0.0061 (5)
C10 0.0302 (7) 0.0338 (7) 0.0238 (7) −0.0112 (6) −0.0019 (5) −0.0055 (5)
C11 0.0528 (12) 0.0333 (9) 0.1083 (19) −0.0182 (9) −0.0025 (12) −0.0103 (10)
C12 0.0349 (8) 0.0362 (8) 0.0382 (8) −0.0074 (6) −0.0134 (6) 0.0001 (6)

Geometric parameters (Å, °)

S—O4 1.500 (2) C4—C5 1.391 (2)
S—C1 1.760 (1) C5—C6 1.385 (2)
S—C12 1.797 (2) C5—H5 0.9300
F—C4 1.365 (2) C6—C7 1.383 (2)
O1—C8 1.374 (2) C6—H6 0.9300
O1—C7 1.382 (2) C8—C9 1.484 (2)
O2—C10 1.335 (2) C9—C10 1.514 (2)
O2—C11 1.450 (2) C9—H9A 0.9700
O3—C10 1.200 (2) C9—H9B 0.9700
C1—C8 1.355 (2) C11—H11A 0.9600
C1—C2 1.444 (2) C11—H11B 0.9600
C2—C7 1.398 (2) C11—H11C 0.9600
C2—C3 1.398 (2) C12—H12A 0.9600
C3—C4 1.374 (2) C12—H12B 0.9600
C3—H3 0.9300 C12—H12C 0.9600
O4—S—C1 106.58 (7) C6—C7—C2 123.8 (1)
O4—S—C12 106.22 (8) C1—C8—O1 111.2 (1)
C1—S—C12 98.29 (7) C1—C8—C9 132.4 (1)
C8—O1—C7 106.3 (1) O1—C8—C9 116.5 (1)
C10—O2—C11 116.0 (1) C8—C9—C10 114.0 (1)
C8—C1—C2 107.3 (1) C8—C9—H9A 108.8
C8—C1—S 123.2 (1) C10—C9—H9A 108.8
C2—C1—S 129.4 (1) C8—C9—H9B 108.8
C7—C2—C3 119.5 (1) C10—C9—H9B 108.8
C7—C2—C1 104.8 (1) H9A—C9—H9B 107.7
C3—C2—C1 135.8 (1) O3—C10—O2 124.1 (1)
C4—C3—C2 115.9 (1) O3—C10—C9 126.4 (1)
C4—C3—H3 122.1 O2—C10—C9 109.5 (1)
C2—C3—H3 122.1 O2—C11—H11A 109.5
F—C4—C3 117.7 (1) O2—C11—H11B 109.5
F—C4—C5 117.5 (1) H11A—C11—H11B 109.5
C3—C4—C5 124.8 (2) O2—C11—H11C 109.5
C6—C5—C4 119.4 (1) H11A—C11—H11C 109.5
C6—C5—H5 120.3 H11B—C11—H11C 109.5
C4—C5—H5 120.3 S—C12—H12A 109.5
C7—C6—C5 116.6 (1) S—C12—H12B 109.5
C7—C6—H6 121.7 H12A—C12—H12B 109.5
C5—C6—H6 121.7 S—C12—H12C 109.5
O1—C7—C6 125.7 (1) H12A—C12—H12C 109.5
O1—C7—C2 110.5 (1) H12B—C12—H12C 109.5
O4—S—C1—C8 126.70 (13) C5—C6—C7—C2 −0.8 (2)
C12—S—C1—C8 −123.55 (13) C3—C2—C7—O1 −179.47 (12)
O4—S—C1—C2 −48.22 (14) C1—C2—C7—O1 0.62 (15)
C12—S—C1—C2 61.53 (14) C3—C2—C7—C6 0.3 (2)
C8—C1—C2—C7 −0.35 (15) C1—C2—C7—C6 −179.62 (13)
S—C1—C2—C7 175.19 (11) C2—C1—C8—O1 −0.04 (16)
C8—C1—C2—C3 179.77 (15) S—C1—C8—O1 −175.92 (9)
S—C1—C2—C3 −4.7 (2) C2—C1—C8—C9 −179.96 (14)
C7—C2—C3—C4 0.6 (2) S—C1—C8—C9 4.2 (2)
C1—C2—C3—C4 −179.54 (15) C7—O1—C8—C1 0.42 (15)
C2—C3—C4—F 178.65 (12) C7—O1—C8—C9 −179.65 (12)
C2—C3—C4—C5 −1.0 (2) C1—C8—C9—C10 61.1 (2)
F—C4—C5—C6 −179.15 (14) O1—C8—C9—C10 −118.82 (13)
C3—C4—C5—C6 0.5 (2) C11—O2—C10—O3 0.5 (2)
C4—C5—C6—C7 0.4 (2) C11—O2—C10—C9 179.20 (16)
C8—O1—C7—C6 179.59 (14) C8—C9—C10—O3 −6.6 (2)
C8—O1—C7—C2 −0.65 (14) C8—C9—C10—O2 174.75 (12)
C5—C6—C7—O1 178.93 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O4i 0.93 2.39 3.303 (2) 166
C9—H9A···O4ii 0.97 2.22 3.179 (2) 168
C9—H9B···O1iii 0.97 2.54 3.489 (2) 166
C12—H12A···O3iv 0.96 2.60 3.478 (2) 152
C11—H11A···Cg2v 0.96 2.97 3.93 173

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+2, −z; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2003).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2139. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett 40, 9383–9384.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030451/jj2003sup1.cif

e-65-o2096-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030451/jj2003Isup2.hkl

e-65-o2096-Isup2.hkl (130.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES