Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):m1152–m1153. doi: 10.1107/S1600536809033947

Poly[[diaqua­hemi-μ4-oxalato-μ2-oxalato-praseodymium(III)] monohydrate]

Ting-Hai Yang a,*, Qiang Chen a, Wei Zhuang a, Zhe Wang a, Bang-Yi Yue a
PMCID: PMC2969896  PMID: 21577485

Abstract

In the title complex, {[Pr(C2O4)1.5(H2O)2]·H2O}n, the PrIII ion, which lies on a crystallographic inversion centre, is coordinated by seven O atoms from four oxalate ligands and two O atoms from two water ligands; further Pr—O coordination from tetra­dentate oxalate ligands forms a three-dimensional structure. The compound crystallized as a monohydrate, the water mol­ecule occupying space in small voids and being secured by O—H⋯O hydrogen bonding as an acceptor from ligand water H atoms and as a donor to oxalate O-acceptor sites.

Related literature

For background to lanthanide oxalates and their preparation, see: Hansson (1970, 1972, 1973a , 1973b ); Michaelides et al. (1988); Ollendorf & Weigel (1969); Steinfink & Brunton (1970); Trollet et al. (1998); Trombe (2003); Unaleroglu et al. (1997). For related structures, see: Trombe et al. (2004); Barrett Adams et al. (1998); Beagley et al. (1988).graphic file with name e-65-m1152-scheme1.jpg

Experimental

Crystal data

  • [Pr(C2O4)1.5(H2O)2]·H2O

  • M r = 326.99

  • Triclinic, Inline graphic

  • a = 6.0367 (12) Å

  • b = 7.6222 (15) Å

  • c = 8.9353 (18) Å

  • α = 98.330 (4)°

  • β = 99.814 (3)°

  • γ = 96.734 (4)°

  • V = 396.58 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.17 mm−1

  • T = 273 K

  • 0.18 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.341, T max = 0.542

  • 2140 measured reflections

  • 1521 independent reflections

  • 1450 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.075

  • S = 1.00

  • 1521 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.50 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033947/nk2001sup1.cif

e-65-m1152-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033947/nk2001Isup2.hkl

e-65-m1152-Isup2.hkl (75KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WB⋯O1W 0.84 2.55 2.858 (7) 103
O1W—H1WA⋯O2i 0.84 1.96 2.694 (6) 146
O1W—H1WA⋯O3ii 0.84 2.60 3.235 (6) 133
O1W—H1WB⋯O3Wiii 0.84 2.00 2.833 (6) 169
O2W—H2WA⋯O3Wiv 0.84 1.98 2.807 (7) 166
O2W—H2WB⋯O3v 0.84 2.20 2.919 (6) 144
O3W—H3WA⋯O6vi 0.84 2.08 2.829 (7) 149
O3W—H3WB⋯O4vii 0.84 2.03 2.833 (6) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors acknowledge the High-Tech Research Institute of Nanjing University for supporting this work.

supplementary crystallographic information

Comment

In the last decade considerable attention has been afforded to the structures and properties of lanthanide oxalates due to their ability to act as precursors of lanthanide oxides. Some single crystals of lanthanide oxalates, such as[Ln(C2O4)3(H2O)4].(H2O) (Ln = Sc or Yb), [Ln2(C2O4)3(H2O)6].4H2O (Ln = La, Ce, Pr or Nd) and [Nd2(C2O4)3(H2O)6] have been obtained either in silica gel (Ollendorff & Weigel, 1969), by hydrothermal reaction (Michaelides et al., 1988) or by other methods (Hansson, 1970, 1972, 1973a,b; Unaleroglu et al., 1997; Trollet et al., 1998; Trombe, 2003). Crystals of [Ln(C2O4)(HC2O4)].4H2O (Ln = Er or Tm) were prepared by saturating a boiling solution of oxalic acid in 3 M H2SO4 with the lanthanide oxide and then slowly cooling to 273 K (Steinfink & Brunton, 1970). However, a few praseodymium oxalate complex has been reported. The present paper is concerned with a new crystal structure of praseodymium oxalate complex with a three-dimensional network structure.

The asymmetric unit of the title compound, [Pr(C2O4)1.5(H2O)2].(H2O), (I), is shown in Fig. 1. The Pr atom lies on an inversion centre and is coordinated by seven O atoms [O1, O1iv, O2ii, O3, O4iii, O5 and O6i] from four oxlate ligands, and two O atoms from two aqua ligands, thereby forming a slightly distorted PrO9 polyhedral coordination geometry. The Pr—O bond distances range from 2.451 (4) Å to 2.608 (3) Å, in agreement with those in compounds (Trombe et al. (2004); Barrett Adams et al. (1998)).

In the complex, the equivalent Pr atom are connected is coordinated by seven O atoms from four oxalate ligands and two O atoms from water ligands. Further Pr–O coordination from the tetradentate oxalate ligands forms a three-dimensional structure (Fig.2). The compound crystallized as a monohydrate; this water molecule occupies space in small voids and is secured by O–H···O hydrogen bonding as an acceptor from ligand water H-atoms and as a donor to oxalate O acceptor sites.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Pr(NO3)3.6H2O (0.05 mmol, 0.023 g), Na2C2O4(0.075 mmol, 0.011 g), and deionized water (10 ml) were mixed together. The mixture was sealed in a Teflon-line autoclave and then heated at 443 K for 5 d under autogenous pressure and then cooled to room temperature. Green crystals were obtained.

Refinement

All non-hydrogen atoms were refined anisotropically. The water H atoms were located in a difference Fourier map and refined with a distance restraint of O-H = 0.83-0.85 Å, and with Uiso(H) = 1.5Uiso(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing 50% probability displacement ellipsoids. [symmetry codes:(i) -x + 2,-y + 1,-z + 1; (ii) -x + 3,-y + 2,-z + 1; (iii) -x + 2,-y + 1,-z; (iv) -x + 2,-y + 2,-z + 1.

Fig. 2.

Fig. 2.

The unit cell packing diagram of (I).

Crystal data

[Pr(C2O4)1.5(H2O)2]·H2O Z = 2
Mr = 326.99 F(000) = 310
Triclinic, P1 Dx = 2.738 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0367 (12) Å Cell parameters from 905 reflections
b = 7.6222 (15) Å θ = 3.3–28.3°
c = 8.9353 (18) Å µ = 6.17 mm1
α = 98.330 (4)° T = 273 K
β = 99.814 (3)° Block, green
γ = 96.734 (4)° 0.18 × 0.16 × 0.10 mm
V = 396.58 (14) Å3

Data collection

Bruker SMART APEX CCD diffractometer 1521 independent reflections
Radiation source: fine-focus sealed tube 1450 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −7→7
Tmin = 0.341, Tmax = 0.542 k = −9→8
2140 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 1.09P] where P = (Fo2 + 2Fc2)/3
1521 reflections (Δ/σ)max = 0.001
118 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −1.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pr1 1.00780 (5) 0.80762 (4) 0.29489 (3) 0.01182 (13)
C1 1.4452 (9) 1.0278 (7) 0.5703 (6) 0.0155 (11)
C2 1.0808 (10) 0.5659 (7) −0.0322 (7) 0.0163 (12)
C3 0.8789 (9) 0.5155 (7) 0.5109 (6) 0.0157 (11)
O1 1.2322 (6) 0.9964 (5) 0.5514 (4) 0.0156 (8)
O2 1.5785 (7) 1.1009 (6) 0.6910 (5) 0.0220 (9)
O3 1.1296 (7) 0.7232 (5) 0.0431 (5) 0.0195 (9)
O4 1.1455 (7) 0.5077 (5) −0.1515 (5) 0.0217 (9)
O5 0.8004 (7) 0.6413 (5) 0.4552 (5) 0.0195 (9)
O6 0.7818 (7) 0.4116 (6) 0.5849 (5) 0.0230 (9)
O1W 0.6751 (7) 0.8292 (7) 0.0928 (5) 0.0310 (11)
H1WA 0.5581 0.8534 0.1260 0.046*
H1WB 0.6299 0.7771 0.0011 0.046*
O2W 1.0612 (8) 1.0993 (6) 0.2071 (5) 0.0288 (10)
H2WA 1.1653 1.1872 0.2227 0.043*
H2WB 0.9752 1.1029 0.1239 0.043*
O3W 0.4213 (9) 0.3694 (7) 0.2101 (6) 0.0420 (13)
H3WA 0.4103 0.4339 0.2922 0.063*
H3WB 0.5590 0.3823 0.2031 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pr1 0.01064 (19) 0.01179 (18) 0.01243 (18) 0.00024 (12) 0.00360 (12) −0.00045 (12)
C1 0.012 (3) 0.016 (3) 0.019 (3) 0.001 (2) 0.005 (2) 0.001 (2)
C2 0.015 (3) 0.016 (3) 0.018 (3) 0.002 (2) 0.005 (2) 0.002 (2)
C3 0.016 (3) 0.016 (3) 0.014 (3) 0.002 (2) 0.004 (2) 0.000 (2)
O1 0.0075 (19) 0.019 (2) 0.020 (2) 0.0013 (15) 0.0047 (15) −0.0003 (16)
O2 0.013 (2) 0.032 (2) 0.016 (2) −0.0027 (17) 0.0036 (16) −0.0062 (18)
O3 0.023 (2) 0.016 (2) 0.017 (2) −0.0029 (16) 0.0072 (17) −0.0033 (16)
O4 0.025 (2) 0.018 (2) 0.020 (2) −0.0062 (17) 0.0118 (17) −0.0028 (17)
O5 0.021 (2) 0.019 (2) 0.023 (2) 0.0084 (17) 0.0089 (17) 0.0085 (17)
O6 0.017 (2) 0.026 (2) 0.031 (2) 0.0070 (18) 0.0095 (18) 0.0138 (19)
O1W 0.015 (2) 0.053 (3) 0.023 (2) 0.010 (2) 0.0049 (18) −0.005 (2)
O2W 0.029 (3) 0.021 (2) 0.035 (3) −0.0021 (19) 0.001 (2) 0.013 (2)
O3W 0.029 (3) 0.050 (3) 0.038 (3) −0.013 (2) 0.013 (2) −0.017 (2)

Geometric parameters (Å, °)

Pr1—O5 2.448 (4) C2—C2iii 1.555 (11)
Pr1—O2W 2.466 (4) C3—O5 1.248 (7)
Pr1—O6i 2.472 (4) C3—O6 1.258 (7)
Pr1—O2ii 2.490 (4) C3—C3i 1.548 (11)
Pr1—O1W 2.500 (4) O1—Pr1iv 2.609 (4)
Pr1—O3 2.504 (4) O2—Pr1ii 2.490 (4)
Pr1—O4iii 2.541 (4) O4—Pr1iii 2.541 (4)
Pr1—O1 2.586 (4) O6—Pr1i 2.472 (4)
Pr1—O1iv 2.609 (4) O1W—H1WA 0.8413
C1—O2 1.243 (7) O1W—H1WB 0.8417
C1—O1 1.258 (7) O2W—H2WA 0.8412
C1—C1ii 1.546 (11) O2W—H2WB 0.8372
C2—O4 1.238 (7) O3W—H3WA 0.8386
C2—O3 1.263 (7) O3W—H3WB 0.8400
O5—Pr1—O2W 142.99 (15) O6i—Pr1—O1iv 120.77 (14)
O5—Pr1—O6i 65.89 (14) O2ii—Pr1—O1iv 121.99 (13)
O2W—Pr1—O6i 142.54 (15) O1W—Pr1—O1iv 77.27 (13)
O5—Pr1—O2ii 131.79 (14) O3—Pr1—O1iv 146.78 (13)
O2W—Pr1—O2ii 71.54 (15) O4iii—Pr1—O1iv 122.88 (13)
O6i—Pr1—O2ii 71.37 (14) O1—Pr1—O1iv 65.40 (14)
O5—Pr1—O1W 97.65 (15) O2—C1—O1 126.7 (5)
O2W—Pr1—O1W 70.26 (16) O2—C1—C1ii 116.0 (6)
O6i—Pr1—O1W 142.27 (16) O1—C1—C1ii 117.3 (6)
O2ii—Pr1—O1W 130.26 (15) O4—C2—O3 126.8 (5)
O5—Pr1—O3 133.93 (13) O4—C2—C2iii 117.5 (6)
O2W—Pr1—O3 78.07 (15) O3—C2—C2iii 115.7 (6)
O6i—Pr1—O3 92.40 (14) O5—C3—O6 126.5 (5)
O2ii—Pr1—O3 67.24 (13) O5—C3—C3i 117.1 (6)
O1W—Pr1—O3 74.66 (14) O6—C3—C3i 116.4 (6)
O5—Pr1—O4iii 70.30 (13) C1—O1—Pr1 118.7 (3)
O2W—Pr1—O4iii 132.32 (15) C1—O1—Pr1iv 123.3 (3)
O6i—Pr1—O4iii 69.96 (15) Pr1—O1—Pr1iv 114.60 (14)
O2ii—Pr1—O4iii 114.58 (14) C1—O2—Pr1ii 123.5 (4)
O1W—Pr1—O4iii 72.53 (15) C2—O3—Pr1 121.8 (4)
O3—Pr1—O4iii 64.03 (13) C2—O4—Pr1iii 120.5 (4)
O5—Pr1—O1 85.86 (13) C3—O5—Pr1 120.4 (4)
O2W—Pr1—O1 81.79 (14) C3—O6—Pr1i 119.7 (4)
O6i—Pr1—O1 77.20 (14) Pr1—O1W—H1WA 115.2
O2ii—Pr1—O1 63.42 (12) Pr1—O1W—H1WB 132.7
O1W—Pr1—O1 137.77 (14) H1WA—O1W—H1WB 106.2
O3—Pr1—O1 130.36 (13) Pr1—O2W—H2WA 136.4
O4iii—Pr1—O1 145.06 (13) Pr1—O2W—H2WB 113.6
O5—Pr1—O1iv 67.14 (13) H2WA—O2W—H2WB 107.3
O2W—Pr1—O1iv 76.00 (14) H3WA—O3W—H3WB 107.4
O2—C1—O1—Pr1 −172.7 (5) C2iii—C2—O3—Pr1 6.3 (8)
C1ii—C1—O1—Pr1 8.0 (8) O5—Pr1—O3—C2 1.9 (5)
O2—C1—O1—Pr1iv 29.2 (8) O2W—Pr1—O3—C2 −156.5 (4)
C1ii—C1—O1—Pr1iv −150.1 (5) O6i—Pr1—O3—C2 60.1 (4)
O5—Pr1—O1—C1 133.4 (4) O2ii—Pr1—O3—C2 128.7 (5)
O2W—Pr1—O1—C1 −81.6 (4) O1W—Pr1—O3—C2 −83.9 (4)
O6i—Pr1—O1—C1 67.2 (4) O4iii—Pr1—O3—C2 −6.2 (4)
O2ii—Pr1—O1—C1 −8.2 (4) O1—Pr1—O3—C2 135.3 (4)
O1W—Pr1—O1—C1 −129.8 (4) O1iv—Pr1—O3—C2 −117.2 (4)
O3—Pr1—O1—C1 −15.0 (5) O3—C2—O4—Pr1iii −174.2 (5)
O4iii—Pr1—O1—C1 87.3 (4) C2iii—C2—O4—Pr1iii 4.8 (9)
O1iv—Pr1—O1—C1 −159.9 (5) O6—C3—O5—Pr1 −174.3 (5)
O5—Pr1—O1—Pr1iv −66.72 (16) C3i—C3—O5—Pr1 6.5 (8)
O2W—Pr1—O1—Pr1iv 78.30 (17) O2W—Pr1—O5—C3 −154.9 (4)
O6i—Pr1—O1—Pr1iv −132.92 (18) O6i—Pr1—O5—C3 −6.5 (4)
O2ii—Pr1—O1—Pr1iv 151.7 (2) O2ii—Pr1—O5—C3 −36.2 (5)
O1W—Pr1—O1—Pr1iv 30.1 (3) O1W—Pr1—O5—C3 138.0 (4)
O3—Pr1—O1—Pr1iv 144.93 (15) O3—Pr1—O5—C3 61.9 (5)
O4iii—Pr1—O1—Pr1iv −112.8 (2) O4iii—Pr1—O5—C3 69.7 (4)
O1iv—Pr1—O1—Pr1iv 0.0 O1—Pr1—O5—C3 −84.4 (4)
O1—C1—O2—Pr1ii −171.6 (4) O1iv—Pr1—O5—C3 −149.4 (4)
C1ii—C1—O2—Pr1ii 7.8 (9) O5—C3—O6—Pr1i −173.9 (4)
O4—C2—O3—Pr1 −174.7 (5) C3i—C3—O6—Pr1i 5.3 (8)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3, −y+2, −z+1; (iii) −x+2, −y+1, −z; (iv) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2W—H2WB···O1W 0.84 2.55 2.858 (7) 103
O1W—H1WA···O2iv 0.84 1.96 2.694 (6) 146
O1W—H1WA···O3v 0.84 2.60 3.235 (6) 133
O1W—H1WB···O3Wvi 0.84 2.00 2.833 (6) 169
O2W—H2WA···O3Wvii 0.84 1.98 2.807 (7) 166
O2W—H2WB···O3viii 0.84 2.20 2.919 (6) 144
O3W—H3WA···O6ix 0.84 2.08 2.829 (7) 149
O3W—H3WB···O4iii 0.84 2.03 2.833 (6) 159

Symmetry codes: (iv) −x+2, −y+2, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z; (vii) x+1, y+1, z; (viii) −x+2, −y+2, −z; (ix) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2001).

References

  1. Barrett Adams, D. M. Y., Kahwa, I. A. & Mague, J. T. (1998). New J. Chem 22, 919–921.
  2. Beagley, B., Pritchard, R. G., Evmiridis, N. P., Michailides, A. & Skoulika, S. (1988). Acta Cryst. C44, 174–175.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Hansson, E. (1970). Acta Chem. Scand 24, 2969–2982.
  7. Hansson, E. (1972). Acta Chem. Scand 26, 1337–1350.
  8. Hansson, E. (1973a). Acta Chem. Scand 27, 823–834.
  9. Hansson, E. (1973b). Acta Chem. Scand 27, 2852–2860.
  10. Michaelides, A., Skoulika, S. & Aubry, A. (1988). Mater. Res. Bull.23, 579–585.
  11. Ollendorf, W. & Weigel, F. (1969). Inorg. Nucl. Chem. Lett 5, 263–269.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Steinfink, H. & Brunton, G. D. (1970). Inorg. Chem.9, 2112–2117.
  14. Trollet, D., Rome, S. & Mosset, A. (1998). Polyhedron, 17, 3977–3978.
  15. Trombe, J. C. (2003). J. Chem. Crystallogr.33, 19–26.
  16. Trombe, J. C. & Mohanu, A. (2004). Solid State Sci.6, 1403–1419.
  17. Unaleroglu, C., Zumreoglu-Karan, B. & Zencir, Y. (1997). Polyhedron, 16, 2155–2161.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033947/nk2001sup1.cif

e-65-m1152-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033947/nk2001Isup2.hkl

e-65-m1152-Isup2.hkl (75KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES