Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 19;65(Pt 9):m1105. doi: 10.1107/S1600536809032115

Poly[[di-μ3-nicotinato-μ3-oxalato-samarium(III)silver(I)] dihydrate]

Li-Cai Zhu a, Zhen-Gang Zhao b, Shu-Juan Yu b,*
PMCID: PMC2969901  PMID: 21577452

Abstract

In the title three-dimensional heterometallic complex, {[AgSm(C6H4NO2)2(C2O4)]·2H2O}n, the SmIII ion is eight-coordinated by four O atoms from four different nicotinate ligands and four O atoms from two different oxalate ligands. The three-coordinate AgI ion is bonded to two N atoms from two different nicotinate anions and one O atom from an oxalate anion. These metal coordination units are connected by bridging nicotinate and oxalate ligands, generating a three-dimensional network. The uncoordinated water mol­ecules link the carboxyl­ate groups via O—H⋯O hydrogen bonding. The crystal structure is further stabilized by hydrogen bonds between the water mol­ecules.

Related literature

For theapplications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Luo et al. (2007); Peng et al. (2008).graphic file with name e-65-m1105-scheme1.jpg

Experimental

Crystal data

  • [AgSm(C6H4NO2)2(C2O4)]·2H2O

  • M r = 626.49

  • Monoclinic, Inline graphic

  • a = 9.7145 (9) Å

  • b = 22.3444 (15) Å

  • c = 9.1726 (6) Å

  • β = 117.295 (1)°

  • V = 1769.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.45 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.374, T max = 0.429

  • 8972 measured reflections

  • 3171 independent reflections

  • 2995 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.052

  • S = 1.12

  • 3171 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032115/pv2185sup1.cif

e-65-m1105-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032115/pv2185Isup2.hkl

e-65-m1105-Isup2.hkl (155.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O7i 0.86 2.10 2.960 (5) 175
O1W—H2W⋯O2W 0.86 2.06 2.892 (7) 161
O2W—H4W⋯O1Wi 0.87 1.92 2.780 (7) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands have generated much interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Luo et al., 2007; Peng et al., 2008). As an extension of this research, we report here the structure of the title compound, a new heterometallic coordination polymer.

In the title compound (Fig. 1), there are one SmIII ion, one AgI ion, two halves of oxalate ligand, two nicotinate ligands, and two lattice water molecules in the asymmetric unit. Each SmIII ion is eight-coordinated by four O atoms from four different nicotinate ligands, and four O atoms of two different oxalate ligands. The Sm center can be described as having a bicapped trigonal prism coordination geometry. The three-coordinate AgI ion is bonded to two N atoms from two different nicotinate anions and one O atom from an oxalate anion. Thus the AgI ion is in a T-shaped configuration. These metal coordination units are connected by bridging nicotinate and oxalate ligands, generating a three-dimensional network (Fig. 2). The uncoordinated water molecules link the carboxylate groups by O—H···O hydrogen bonding (Table 1). The crystal structure is further stabilized by hydrogen bonds.

Experimental

A mixture of AgNO3 (0.057 g, 0.33 mmol), Sm2O3 (0.116 g, 0.33 mmol), nicotinic acid (0.164 g, 1.33 mmol), oxalic acid (0.119 g, 1.33 mmol), H2O (7 ml), and HClO4 (0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms of water molecules were found from difference Fourier maps and included in the refinements with a restraint of O—H = 0.86 - 0.87 Å and Uiso(H) = 1.5 Ueq(O). The largest residual electron density in the final difference map was located at a distance of 0.82 Å from Ag2 atom and was meaningless.

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes included in the atomic labels: (A) 2-x, 2-y, 1-z; (B) 1-x, 2-y, -z; (C) 1+x, y, z; (D) x, 1.5-y, -0.5+z; (E) 2-x, 0.5+y, 0.5-z.

Fig. 2.

Fig. 2.

A view of the three-dimensional structure of the title compound; dotted lines denote hydrogen bonds.

Crystal data

[AgSm(C6H4NO2)2(C2O4)]·2H2O F(000) = 1196
Mr = 626.49 Dx = 2.352 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6346 reflections
a = 9.7145 (9) Å θ = 2.4–27.8°
b = 22.3444 (15) Å µ = 4.45 mm1
c = 9.1726 (6) Å T = 296 K
β = 117.295 (1)° Block, colorless
V = 1769.4 (2) Å3 0.23 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 3171 independent reflections
Radiation source: fine-focus sealed tube 2995 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −5→11
Tmin = 0.374, Tmax = 0.429 k = −26→26
8972 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0174P)2 + 1.7329P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.002
3171 reflections Δρmax = 0.84 e Å3
254 parameters Δρmin = −0.65 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00351 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sm1 0.85715 (2) 0.991315 (8) 0.11767 (2) 0.01683 (8)
Ag2 0.82067 (4) 0.852371 (14) 0.48309 (5) 0.04794 (12)
O1 0.8835 (3) 0.94402 (11) 0.3695 (3) 0.0275 (6)
N1 0.6254 (4) 0.88411 (15) 0.5163 (4) 0.0346 (8)
C4 0.3834 (4) 0.93617 (16) 0.4147 (4) 0.0231 (8)
C3 0.4789 (5) 0.88129 (19) 0.6648 (5) 0.0368 (10)
H3 0.4696 0.8681 0.7560 0.044*
C1 0.5154 (4) 0.91951 (17) 0.4047 (5) 0.0291 (9)
H1 0.5291 0.9334 0.3166 0.035*
C2 0.6042 (5) 0.86566 (19) 0.6441 (5) 0.0382 (10)
H2 0.6788 0.8410 0.7221 0.046*
C6 0.2586 (4) 0.97226 (16) 0.2811 (4) 0.0222 (8)
C5 0.3662 (5) 0.91690 (17) 0.5490 (4) 0.0293 (9)
H5 0.2795 0.9279 0.5608 0.035*
O3 0.2900 (3) 0.99674 (11) 0.1769 (3) 0.0284 (6)
O2 0.1309 (3) 0.97383 (13) 0.2834 (3) 0.0313 (6)
N2 0.9619 (4) 0.78296 (14) 0.4537 (4) 0.0332 (8)
C7 0.9364 (4) 0.72618 (16) 0.4792 (5) 0.0287 (8)
H7 0.8605 0.7184 0.5117 0.034*
C9 1.1309 (5) 0.6899 (2) 0.4136 (5) 0.0390 (10)
H9 1.1876 0.6589 0.3994 0.047*
C8 1.0722 (5) 0.79305 (19) 0.4069 (5) 0.0408 (10)
H8 1.0903 0.8322 0.3859 0.049*
O7 0.6156 (3) 0.93618 (11) 0.0496 (3) 0.0253 (6)
C10 1.0169 (4) 0.67816 (16) 0.4599 (4) 0.0239 (8)
C12 1.1588 (5) 0.7483 (2) 0.3889 (6) 0.0490 (12)
H12 1.2365 0.7573 0.3600 0.059*
C13 0.9793 (4) 0.96697 (16) 0.5028 (4) 0.0207 (7)
O8 1.0418 (3) 0.94114 (11) 0.6386 (3) 0.0255 (6)
O6 0.3580 (3) 0.94430 (11) −0.0787 (3) 0.0280 (6)
O1W 0.6113 (6) 0.69616 (19) 0.5607 (5) 0.0925 (14)
H1W 0.6115 0.6576 0.5630 0.139*
H2W 0.5551 0.7081 0.6053 0.139*
O2W 0.4884 (7) 0.7331 (2) 0.7801 (6) 0.1179 (19)
H3W 0.4044 0.7508 0.7119 0.177*
H4W 0.5226 0.7525 0.8720 0.177*
C11 0.9771 (4) 0.61643 (15) 0.4922 (4) 0.0236 (8)
O4 0.8882 (3) 0.61157 (11) 0.5557 (3) 0.0322 (6)
O5 1.0350 (3) 0.57246 (12) 0.4552 (3) 0.0353 (7)
C14 0.4919 (4) 0.96531 (16) −0.0083 (4) 0.0216 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sm1 0.01410 (11) 0.01776 (12) 0.01771 (11) 0.00069 (7) 0.00649 (8) 0.00163 (7)
Ag2 0.0358 (2) 0.02335 (18) 0.0903 (3) 0.00795 (13) 0.0338 (2) 0.00929 (16)
O1 0.0327 (16) 0.0290 (14) 0.0187 (12) −0.0129 (12) 0.0100 (12) −0.0031 (10)
N1 0.0243 (18) 0.0306 (19) 0.046 (2) 0.0061 (14) 0.0134 (16) 0.0060 (15)
C4 0.021 (2) 0.026 (2) 0.0181 (17) −0.0007 (15) 0.0052 (15) 0.0010 (14)
C3 0.044 (3) 0.042 (3) 0.024 (2) 0.010 (2) 0.0148 (19) 0.0092 (17)
C1 0.023 (2) 0.032 (2) 0.032 (2) 0.0064 (16) 0.0126 (17) 0.0080 (17)
C2 0.032 (3) 0.037 (2) 0.034 (2) 0.0069 (19) 0.005 (2) 0.0100 (18)
C6 0.0167 (19) 0.0244 (19) 0.0190 (17) 0.0007 (15) 0.0027 (15) −0.0008 (14)
C5 0.026 (2) 0.035 (2) 0.027 (2) 0.0038 (17) 0.0124 (17) 0.0024 (17)
O3 0.0231 (15) 0.0376 (16) 0.0205 (13) 0.0005 (11) 0.0066 (11) 0.0056 (11)
O2 0.0161 (14) 0.0495 (17) 0.0254 (14) 0.0082 (12) 0.0070 (11) 0.0042 (12)
N2 0.0314 (19) 0.0210 (17) 0.048 (2) 0.0001 (14) 0.0188 (16) 0.0057 (15)
C7 0.024 (2) 0.023 (2) 0.041 (2) 0.0007 (16) 0.0171 (18) 0.0021 (16)
C9 0.036 (3) 0.037 (3) 0.053 (3) 0.0067 (19) 0.029 (2) 0.005 (2)
C8 0.044 (3) 0.031 (2) 0.053 (3) −0.0032 (19) 0.026 (2) 0.010 (2)
O7 0.0179 (14) 0.0232 (13) 0.0326 (14) 0.0020 (11) 0.0097 (11) 0.0017 (11)
C10 0.022 (2) 0.0234 (19) 0.0251 (18) 0.0017 (15) 0.0098 (16) −0.0018 (15)
C12 0.041 (3) 0.051 (3) 0.071 (3) −0.002 (2) 0.040 (3) 0.011 (2)
C13 0.0181 (19) 0.0234 (19) 0.0239 (19) 0.0007 (14) 0.0126 (16) 0.0006 (14)
O8 0.0291 (15) 0.0218 (13) 0.0221 (13) 0.0012 (11) 0.0088 (11) 0.0022 (10)
O6 0.0179 (14) 0.0271 (14) 0.0371 (15) −0.0011 (11) 0.0109 (12) −0.0066 (11)
O1W 0.120 (4) 0.060 (3) 0.108 (3) 0.008 (3) 0.062 (3) −0.012 (2)
O2W 0.147 (5) 0.100 (4) 0.106 (4) 0.027 (4) 0.056 (4) 0.012 (3)
C11 0.024 (2) 0.0162 (18) 0.0233 (18) 0.0018 (14) 0.0045 (16) −0.0033 (14)
O4 0.0308 (16) 0.0235 (14) 0.0488 (17) −0.0014 (11) 0.0239 (14) 0.0039 (12)
O5 0.0417 (18) 0.0265 (15) 0.0296 (14) 0.0111 (12) 0.0092 (13) −0.0050 (11)
C14 0.021 (2) 0.025 (2) 0.0208 (18) −0.0003 (15) 0.0115 (16) −0.0035 (14)

Geometric parameters (Å, °)

Sm1—O5i 2.340 (3) N2—C7 1.334 (5)
Sm1—O2ii 2.414 (2) N2—C8 1.342 (5)
Sm1—O4iii 2.420 (3) C7—C10 1.386 (5)
Sm1—O3iv 2.424 (2) C7—H7 0.9300
Sm1—O6iv 2.425 (2) C9—C12 1.372 (6)
Sm1—O1 2.444 (2) C9—C10 1.381 (5)
Sm1—O7 2.464 (2) C9—H9 0.9300
Sm1—O8v 2.496 (2) C8—C12 1.366 (6)
Ag2—N2 2.168 (3) C8—H8 0.9300
Ag2—N1 2.174 (3) O7—C14 1.251 (4)
Ag2—O1 2.497 (2) C10—C11 1.498 (5)
O1—C13 1.257 (4) C12—H12 0.9300
N1—C2 1.344 (5) C13—O8 1.249 (4)
N1—C1 1.346 (5) C13—C13v 1.537 (7)
C4—C1 1.378 (5) O8—Sm1v 2.496 (2)
C4—C5 1.385 (5) O6—C14 1.249 (4)
C4—C6 1.504 (5) O6—Sm1iv 2.425 (2)
C3—C2 1.361 (6) O1W—H1W 0.8624
C3—C5 1.376 (5) O1W—H2W 0.8612
C3—H3 0.9300 O2W—H3W 0.8629
C1—H1 0.9300 O2W—H4W 0.8667
C2—H2 0.9300 C11—O4 1.249 (4)
C6—O2 1.251 (4) C11—O5 1.253 (4)
C6—O3 1.254 (4) O4—Sm1vii 2.420 (3)
C5—H5 0.9300 O5—Sm1viii 2.340 (3)
O3—Sm1iv 2.424 (2) C14—C14iv 1.559 (7)
O2—Sm1vi 2.414 (2)
O5i—Sm1—O2ii 78.29 (10) N1—C2—C3 123.2 (4)
O5i—Sm1—O4iii 123.28 (10) N1—C2—H2 118.4
O2ii—Sm1—O4iii 76.96 (9) C3—C2—H2 118.4
O5i—Sm1—O3iv 73.05 (9) O2—C6—O3 126.2 (3)
O2ii—Sm1—O3iv 129.50 (9) O2—C6—C4 115.9 (3)
O4iii—Sm1—O3iv 85.19 (9) O3—C6—C4 117.9 (3)
O5i—Sm1—O6iv 88.09 (10) C3—C5—C4 119.2 (4)
O2ii—Sm1—O6iv 144.58 (9) C3—C5—H5 120.4
O4iii—Sm1—O6iv 136.12 (9) C4—C5—H5 120.4
O3iv—Sm1—O6iv 75.08 (9) C6—O3—Sm1iv 132.3 (2)
O5i—Sm1—O1 137.60 (8) C6—O2—Sm1vi 143.9 (2)
O2ii—Sm1—O1 74.16 (9) C7—N2—C8 117.1 (4)
O4iii—Sm1—O1 80.84 (9) C7—N2—Ag2 118.6 (3)
O3iv—Sm1—O1 148.63 (9) C8—N2—Ag2 124.2 (3)
O6iv—Sm1—O1 96.06 (9) N2—C7—C10 123.6 (4)
O5i—Sm1—O7 144.52 (9) N2—C7—H7 118.2
O2ii—Sm1—O7 136.44 (9) C10—C7—H7 118.2
O4iii—Sm1—O7 70.86 (9) C12—C9—C10 118.5 (4)
O3iv—Sm1—O7 76.49 (9) C12—C9—H9 120.7
O6iv—Sm1—O7 66.61 (8) C10—C9—H9 120.7
O1—Sm1—O7 72.42 (8) N2—C8—C12 122.8 (4)
O5i—Sm1—O8v 75.15 (9) N2—C8—H8 118.6
O2ii—Sm1—O8v 70.51 (9) C12—C8—H8 118.6
O4iii—Sm1—O8v 138.13 (9) C14—O7—Sm1 117.7 (2)
O3iv—Sm1—O8v 136.13 (8) C9—C10—C7 118.1 (4)
O6iv—Sm1—O8v 74.44 (8) C9—C10—C11 123.5 (3)
O1—Sm1—O8v 65.62 (8) C7—C10—C11 118.4 (3)
O7—Sm1—O8v 117.85 (8) C8—C12—C9 119.8 (4)
N2—Ag2—N1 153.35 (12) C8—C12—H12 120.1
N2—Ag2—O1 104.18 (11) C9—C12—H12 120.1
N1—Ag2—O1 100.77 (11) O8—C13—O1 125.9 (3)
C13—O1—Sm1 116.9 (2) O8—C13—C13v 117.5 (4)
C13—O1—Ag2 98.2 (2) O1—C13—C13v 116.6 (4)
Sm1—O1—Ag2 144.02 (10) C13—O8—Sm1v 115.2 (2)
C2—N1—C1 117.2 (4) C14—O6—Sm1iv 118.5 (2)
C2—N1—Ag2 120.9 (3) H1W—O1W—H2W 106.9
C1—N1—Ag2 121.7 (3) H3W—O2W—H4W 106.8
C1—C4—C5 118.1 (3) O4—C11—O5 123.4 (3)
C1—C4—C6 121.2 (3) O4—C11—C10 118.0 (3)
C5—C4—C6 120.7 (3) O5—C11—C10 118.7 (3)
C2—C3—C5 119.1 (4) C11—O4—Sm1vii 112.3 (2)
C2—C3—H3 120.5 C11—O5—Sm1viii 179.0 (3)
C5—C3—H3 120.5 O6—C14—O7 126.5 (3)
N1—C1—C4 123.1 (4) O6—C14—C14iv 117.3 (4)
N1—C1—H1 118.4 O7—C14—C14iv 116.2 (4)
C4—C1—H1 118.4

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z; (v) −x+2, −y+2, −z+1; (vi) x−1, y, z; (vii) x, −y+3/2, z+1/2; (viii) −x+2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O7vii 0.86 2.10 2.960 (5) 175
O1W—H2W···O2W 0.86 2.06 2.892 (7) 161
O2W—H4W···O1Wvii 0.87 1.92 2.780 (7) 171

Symmetry codes: (vii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2185).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed.45, 73–77.
  3. Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  4. Luo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des.7, 851–853.
  5. Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun.11, 1409–1411.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032115/pv2185sup1.cif

e-65-m1105-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032115/pv2185Isup2.hkl

e-65-m1105-Isup2.hkl (155.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES