Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):o2146. doi: 10.1107/S1600536809031183

5,7-Dimethoxy­isobenzofuran-1(3H)-one

Ming-Xue Sun a, Xu Li b, Wen-Yong Liu a, Kai Xiao a,*
PMCID: PMC2969903  PMID: 21577555

Abstract

The asymmetric unit of the title compound, C10H10O4, which has been isolated from rhizoma Polygonum Cuspidatum, a Chinese folk medicine, contains two crystallographically independent mol­ecules. The mol­ecules are essentially planar, with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen-bonding inter­actions, with a stacking direction of the mol­ecules parallel to [101].

Related literature

For the synthesis of 5,7-dimethoxy­phthalide, see: Talapatra & Monoj (1980); Dang et al. (1999); Orito et al. (1995). For the title compound as an inter­mediate, see: Zuo et al. (2008); Lee et al. (2001). For the title compound as a by­product, see: Fürstner et al. (2000).graphic file with name e-65-o2146-scheme1.jpg

Experimental

Crystal data

  • C10H10O4

  • M r = 194.18

  • Monoclinic, Inline graphic

  • a = 8.532 (3) Å

  • b = 25.877 (10) Å

  • c = 8.374 (3) Å

  • β = 104.322 (6)°

  • V = 1791.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.12 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.987, T max = 0.989

  • 7489 measured reflections

  • 3216 independent reflections

  • 1766 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.131

  • S = 0.93

  • 3216 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031183/wm2246sup1.cif

e-65-o2146-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031183/wm2246Isup2.hkl

e-65-o2146-Isup2.hkl (157.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A⋯O1Bi 0.93 2.51 3.397 (3) 161
C8A—H8A1⋯O2Bii 0.97 2.53 3.337 (3) 140
C6B—H6B⋯O1Aiii 0.93 2.44 3.325 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (20872179) and the Science and Technology Commission of Shanghai Municipality (STCSM) (08DZ1971504).

supplementary crystallographic information

Comment

The compound 5, 7-dimethoxyphthalide has been previously reported. It could be obtained by different synthetic strategies, e.g. from 5,7-dihydroxyphthalide (Talapatra & Monoj, 1980), 6-iodo-3-methoxybenzyl alcohols (Dang et al., 1999) or 3,5-dimethoxybenzyl alcohol (Orito et al.,1995). It could act as an intermediate product in the process of synthesizing some significant compounds, such as 5,7-dimethoxy-4-methylphthalide and 5,7-dihydroxy-4-methylphthaIide (Zuo et al., 2008), or mycophenolic acid and its analogs (Lee et al., 2001). It was also reported as a byproduct in the synthesis of zearalenone and lasiodiplodin (Fürstner et al., 2000). However, no structural details were provided. In this study, 5,7-dimethoxyphthalide was isolated from the rhizoma Polygonum cuspidatum as colorless prismatic crystals.

The molecule (Fig. 1 ) is essentially planar with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen-bonding interactions with a stacking direction of the molecules parallel to [101] (Fig. 2 ).

Experimental

The slices of the dried roots of P. cuspidatum (10 kg) were extracted with 60% aqueous acetone 3 times (24 h each) at room temperature. The solvent was evaporated in vacuo and some hydrophobic substances precipitated which were filtered off. The filtrate was concentrated to a suitable volume, then chromatographed on a Sephadex LH-20 column eluted with H2O, aqueous MeOH (10%-70%) and 50% acetone successively to give five fractions. The fraction eluated by 10% MeOH was subjected to MCI gel chromatography eluted with gradient aqueous MeOH solvent. The 30% aqueous MeOH eluate from the MCI column afforded the compound 5,7-dimethoxyphthalide as an amorphous powder. The powder was recrystallized in acetone and produced colourless prismatic crystals.

Refinement

The H atoms were refined at calculated positions riding on the parent carbon atoms (C–H = 0.95–0.99 Å) with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

The molecular structure of 5,7-dimethoxyphthalide, showing the atom-labelling scheme. H atoms are shown as small spheres of arbitrary radius. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the crystal, viewed along the b axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.

Crystal data

C10H10O4 F(000) = 816
Mr = 194.18 Dx = 1.440 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 715 reflections
a = 8.532 (3) Å θ = 2.6–21.3°
b = 25.877 (10) Å µ = 0.11 mm1
c = 8.374 (3) Å T = 293 K
β = 104.322 (6)° Prism, colourless
V = 1791.5 (11) Å3 0.12 × 0.12 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3216 independent reflections
Radiation source: fine-focus sealed tube 1766 reflections with I > 2σ(I)
graphite Rint = 0.062
φ and ω scans θmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→10
Tmin = 0.987, Tmax = 0.989 k = −30→31
7489 measured reflections l = −10→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
3216 reflections Δρmax = 0.18 e Å3
258 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0026 (5)

Special details

Experimental. The powder of 5,7-dimethoxyphthalide was solved in acetone and produced colorless crystal.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.3975 (2) 0.42391 (7) 0.1615 (2) 0.0627 (6)
O2A 0.2605 (3) 0.35976 (8) 0.0110 (2) 0.0674 (6)
O3A 0.4002 (2) 0.25798 (7) 0.1709 (2) 0.0571 (6)
O4A 0.8571 (2) 0.28610 (7) 0.6142 (2) 0.0628 (6)
C1A 0.3670 (4) 0.37248 (11) 0.1270 (3) 0.0518 (8)
C2A 0.4830 (3) 0.34270 (10) 0.2496 (3) 0.0417 (6)
C3A 0.5069 (3) 0.28902 (10) 0.2724 (3) 0.0470 (7)
C4A 0.6341 (3) 0.27237 (10) 0.3971 (3) 0.0471 (7)
H4A 0.6529 0.2372 0.4141 0.057*
C5A 0.7359 (3) 0.30831 (11) 0.4992 (3) 0.0487 (7)
C6A 0.7112 (3) 0.36054 (10) 0.4795 (3) 0.0486 (7)
H6A 0.7780 0.3842 0.5478 0.058*
C7A 0.5835 (3) 0.37640 (10) 0.3545 (3) 0.0452 (7)
C8A 0.5296 (3) 0.43027 (10) 0.3046 (3) 0.0542 (8)
H8A1 0.4942 0.4478 0.3920 0.065*
H8A2 0.6164 0.4500 0.2782 0.065*
C9A 0.4125 (4) 0.20351 (11) 0.2069 (4) 0.0644 (9)
H9A1 0.5177 0.1914 0.2025 0.097*
H9A2 0.3312 0.1853 0.1270 0.097*
H9A3 0.3968 0.1976 0.3150 0.097*
C10A 0.9664 (4) 0.31963 (13) 0.7237 (4) 0.0764 (10)
H10A 1.0202 0.3415 0.6614 0.115*
H10B 1.0451 0.2994 0.7999 0.115*
H10C 0.9072 0.3406 0.7833 0.115*
O1B −0.0885 (2) 0.46776 (7) 0.6553 (2) 0.0582 (5)
O2B −0.2380 (2) 0.53224 (8) 0.5190 (2) 0.0674 (6)
O3B −0.0891 (2) 0.63386 (7) 0.6714 (2) 0.0551 (5)
O4B 0.3667 (2) 0.60524 (7) 1.1150 (2) 0.0539 (5)
C1B −0.1230 (3) 0.51938 (12) 0.6263 (3) 0.0522 (8)
C2B −0.0013 (3) 0.54864 (11) 0.7460 (3) 0.0454 (7)
C3B 0.0172 (3) 0.60196 (10) 0.7725 (3) 0.0415 (7)
C4B 0.1434 (3) 0.61849 (10) 0.8969 (3) 0.0440 (7)
H4B 0.1590 0.6537 0.9162 0.053*
C5B 0.2488 (3) 0.58354 (10) 0.9954 (3) 0.0420 (6)
C6B 0.2297 (3) 0.53046 (10) 0.9714 (3) 0.0418 (6)
H6B 0.2988 0.5069 1.0375 0.050*
C7B 0.1032 (3) 0.51477 (9) 0.8449 (3) 0.0403 (6)
C8B 0.0538 (3) 0.46110 (10) 0.7869 (3) 0.0522 (7)
H8B1 0.1386 0.4442 0.7477 0.063*
H8B2 0.0302 0.4406 0.8750 0.063*
C9B −0.0723 (4) 0.68778 (10) 0.7035 (4) 0.0620 (8)
H9B1 −0.0863 0.6948 0.8117 0.093*
H9B2 −0.1527 0.7062 0.6232 0.093*
H9B3 0.0335 0.6988 0.6973 0.093*
C10B 0.4778 (3) 0.57130 (11) 1.2222 (3) 0.0589 (8)
H10D 0.4192 0.5485 1.2769 0.088*
H10E 0.5531 0.5913 1.3028 0.088*
H10F 0.5356 0.5514 1.1587 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0734 (15) 0.0519 (13) 0.0597 (13) 0.0139 (11) 0.0105 (11) 0.0112 (10)
O2A 0.0663 (14) 0.0782 (15) 0.0517 (13) 0.0101 (12) 0.0029 (11) 0.0066 (11)
O3A 0.0585 (13) 0.0487 (13) 0.0580 (12) 0.0039 (10) 0.0028 (10) −0.0025 (10)
O4A 0.0558 (12) 0.0596 (13) 0.0618 (13) 0.0065 (10) −0.0066 (11) −0.0011 (10)
C1A 0.055 (2) 0.059 (2) 0.0442 (18) 0.0101 (16) 0.0194 (16) 0.0078 (15)
C2A 0.0409 (16) 0.0434 (16) 0.0435 (16) 0.0030 (13) 0.0157 (13) 0.0015 (13)
C3A 0.0446 (17) 0.0492 (18) 0.0479 (18) −0.0023 (14) 0.0129 (14) −0.0027 (14)
C4A 0.0491 (17) 0.0413 (16) 0.0515 (17) 0.0026 (13) 0.0132 (15) −0.0009 (13)
C5A 0.0420 (17) 0.0535 (19) 0.0498 (17) 0.0078 (14) 0.0095 (14) 0.0018 (14)
C6A 0.0468 (18) 0.0459 (17) 0.0530 (18) −0.0022 (13) 0.0120 (15) −0.0059 (13)
C7A 0.0444 (17) 0.0441 (17) 0.0520 (17) 0.0035 (13) 0.0215 (14) 0.0037 (14)
C8A 0.064 (2) 0.0491 (18) 0.0544 (18) 0.0077 (14) 0.0233 (16) 0.0054 (14)
C9A 0.069 (2) 0.0492 (19) 0.071 (2) −0.0037 (15) 0.0088 (17) −0.0008 (15)
C10A 0.068 (2) 0.078 (2) 0.069 (2) 0.0022 (18) −0.0115 (18) −0.0118 (18)
O1B 0.0522 (13) 0.0547 (13) 0.0659 (13) −0.0078 (10) 0.0111 (10) −0.0179 (10)
O2B 0.0443 (12) 0.0910 (16) 0.0590 (13) −0.0001 (12) −0.0020 (10) −0.0168 (11)
O3B 0.0514 (12) 0.0544 (13) 0.0538 (12) 0.0078 (10) 0.0018 (9) 0.0017 (10)
O4B 0.0504 (12) 0.0478 (11) 0.0521 (12) 0.0024 (9) −0.0089 (10) −0.0010 (9)
C1B 0.0381 (18) 0.067 (2) 0.0520 (19) −0.0063 (15) 0.0115 (15) −0.0141 (15)
C2B 0.0382 (16) 0.0581 (18) 0.0409 (16) −0.0021 (14) 0.0117 (13) −0.0038 (14)
C3B 0.0381 (16) 0.0455 (17) 0.0410 (16) 0.0036 (13) 0.0098 (13) 0.0033 (13)
C4B 0.0428 (16) 0.0402 (16) 0.0474 (16) −0.0020 (13) 0.0080 (14) 0.0000 (13)
C5B 0.0386 (16) 0.0485 (18) 0.0387 (15) −0.0018 (13) 0.0090 (13) −0.0029 (13)
C6B 0.0381 (16) 0.0438 (16) 0.0437 (16) 0.0047 (12) 0.0107 (13) 0.0030 (12)
C7B 0.0417 (16) 0.0397 (16) 0.0431 (15) 0.0003 (13) 0.0175 (13) −0.0005 (13)
C8B 0.0486 (18) 0.0493 (18) 0.0581 (18) −0.0027 (14) 0.0118 (14) −0.0050 (14)
C9B 0.064 (2) 0.050 (2) 0.068 (2) 0.0100 (15) 0.0074 (16) 0.0063 (15)
C10B 0.0473 (19) 0.062 (2) 0.0578 (19) 0.0068 (15) −0.0056 (15) −0.0028 (15)

Geometric parameters (Å, °)

O1A—C1A 1.373 (3) O1B—C1B 1.376 (3)
O1A—C8A 1.437 (3) O1B—C8B 1.434 (3)
O2A—C1A 1.200 (3) O2B—C1B 1.202 (3)
O3A—C3A 1.346 (3) O3B—C3B 1.357 (3)
O3A—C9A 1.440 (3) O3B—C9B 1.422 (3)
O4A—C5A 1.355 (3) O4B—C5B 1.354 (3)
O4A—C10A 1.428 (3) O4B—C10B 1.434 (3)
C1A—C2A 1.458 (4) C1B—C2B 1.463 (4)
C2A—C7A 1.377 (3) C2B—C7B 1.372 (3)
C2A—C3A 1.410 (4) C2B—C3B 1.400 (4)
C3A—C4A 1.376 (3) C3B—C4B 1.368 (3)
C4A—C5A 1.408 (4) C4B—C5B 1.393 (3)
C4A—H4A 0.9300 C4B—H4B 0.9300
C5A—C6A 1.371 (4) C5B—C6B 1.392 (4)
C6A—C7A 1.374 (3) C6B—C7B 1.373 (3)
C6A—H6A 0.9300 C6B—H6B 0.9300
C7A—C8A 1.495 (3) C7B—C8B 1.497 (3)
C8A—H8A1 0.9700 C8B—H8B1 0.9700
C8A—H8A2 0.9700 C8B—H8B2 0.9700
C9A—H9A1 0.9599 C9B—H9B1 0.9599
C9A—H9A2 0.9599 C9B—H9B2 0.9599
C9A—H9A3 0.9599 C9B—H9B3 0.9599
C10A—H10A 0.9599 C10B—H10D 0.9599
C10A—H10B 0.9599 C10B—H10E 0.9599
C10A—H10C 0.9599 C10B—H10F 0.9599
C1A—O1A—C8A 110.8 (2) C1B—O1B—C8B 110.8 (2)
C3A—O3A—C9A 116.7 (2) C3B—O3B—C9B 117.3 (2)
C5A—O4A—C10A 117.5 (2) C5B—O4B—C10B 117.7 (2)
O2A—C1A—O1A 120.2 (3) O2B—C1B—O1B 120.0 (3)
O2A—C1A—C2A 132.1 (3) O2B—C1B—C2B 132.7 (3)
O1A—C1A—C2A 107.7 (2) O1B—C1B—C2B 107.3 (2)
C7A—C2A—C3A 119.4 (2) C7B—C2B—C3B 120.2 (2)
C7A—C2A—C1A 108.8 (2) C7B—C2B—C1B 109.1 (3)
C3A—C2A—C1A 131.8 (3) C3B—C2B—C1B 130.6 (3)
O3A—C3A—C4A 125.1 (3) O3B—C3B—C4B 124.3 (2)
O3A—C3A—C2A 116.7 (2) O3B—C3B—C2B 118.0 (2)
C4A—C3A—C2A 118.2 (2) C4B—C3B—C2B 117.7 (2)
C3A—C4A—C5A 120.4 (3) C3B—C4B—C5B 121.3 (2)
C3A—C4A—H4A 119.8 C3B—C4B—H4B 119.4
C5A—C4A—H4A 119.8 C5B—C4B—H4B 119.4
O4A—C5A—C6A 124.8 (3) O4B—C5B—C6B 123.7 (2)
O4A—C5A—C4A 113.5 (2) O4B—C5B—C4B 114.9 (2)
C6A—C5A—C4A 121.6 (3) C6B—C5B—C4B 121.3 (2)
C5A—C6A—C7A 117.1 (2) C7B—C6B—C5B 116.4 (2)
C5A—C6A—H6A 121.5 C7B—C6B—H6B 121.8
C7A—C6A—H6A 121.5 C5B—C6B—H6B 121.8
C6A—C7A—C2A 123.3 (2) C2B—C7B—C6B 123.1 (2)
C6A—C7A—C8A 128.5 (3) C2B—C7B—C8B 107.9 (2)
C2A—C7A—C8A 108.2 (2) C6B—C7B—C8B 129.0 (2)
O1A—C8A—C7A 104.5 (2) O1B—C8B—C7B 104.8 (2)
O1A—C8A—H8A1 110.9 O1B—C8B—H8B1 110.8
C7A—C8A—H8A1 110.9 C7B—C8B—H8B1 110.8
O1A—C8A—H8A2 110.9 O1B—C8B—H8B2 110.8
C7A—C8A—H8A2 110.9 C7B—C8B—H8B2 110.8
H8A1—C8A—H8A2 108.9 H8B1—C8B—H8B2 108.9
O3A—C9A—H9A1 109.5 O3B—C9B—H9B1 109.5
O3A—C9A—H9A2 109.5 O3B—C9B—H9B2 109.5
H9A1—C9A—H9A2 109.5 H9B1—C9B—H9B2 109.5
O3A—C9A—H9A3 109.5 O3B—C9B—H9B3 109.5
H9A1—C9A—H9A3 109.5 H9B1—C9B—H9B3 109.5
H9A2—C9A—H9A3 109.5 H9B2—C9B—H9B3 109.5
O4A—C10A—H10A 109.5 O4B—C10B—H10D 109.5
O4A—C10A—H10B 109.5 O4B—C10B—H10E 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10E 109.5
O4A—C10A—H10C 109.5 O4B—C10B—H10F 109.5
H10A—C10A—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10A—H10C 109.5 H10E—C10B—H10F 109.5
C8A—O1A—C1A—O2A −179.8 (2) C8B—O1B—C1B—O2B 179.5 (2)
C8A—O1A—C1A—C2A −0.5 (3) C8B—O1B—C1B—C2B −1.5 (3)
O2A—C1A—C2A—C7A 178.2 (3) O2B—C1B—C2B—C7B 178.6 (3)
O1A—C1A—C2A—C7A −1.0 (3) O1B—C1B—C2B—C7B −0.3 (3)
O2A—C1A—C2A—C3A −0.6 (5) O2B—C1B—C2B—C3B 0.5 (5)
O1A—C1A—C2A—C3A −179.8 (3) O1B—C1B—C2B—C3B −178.5 (2)
C9A—O3A—C3A—C4A 6.2 (4) C9B—O3B—C3B—C4B −3.4 (4)
C9A—O3A—C3A—C2A −172.6 (2) C9B—O3B—C3B—C2B 177.8 (2)
C7A—C2A—C3A—O3A 177.0 (2) C7B—C2B—C3B—O3B 180.0 (2)
C1A—C2A—C3A—O3A −4.3 (4) C1B—C2B—C3B—O3B −2.0 (4)
C7A—C2A—C3A—C4A −1.9 (4) C7B—C2B—C3B—C4B 1.1 (4)
C1A—C2A—C3A—C4A 176.8 (3) C1B—C2B—C3B—C4B 179.1 (2)
O3A—C3A—C4A—C5A −178.2 (2) O3B—C3B—C4B—C5B −179.5 (2)
C2A—C3A—C4A—C5A 0.6 (4) C2B—C3B—C4B—C5B −0.7 (4)
C10A—O4A—C5A—C6A 0.5 (4) C10B—O4B—C5B—C6B 0.2 (4)
C10A—O4A—C5A—C4A −179.9 (2) C10B—O4B—C5B—C4B 179.1 (2)
C3A—C4A—C5A—O4A −178.9 (2) C3B—C4B—C5B—O4B −179.2 (2)
C3A—C4A—C5A—C6A 0.7 (4) C3B—C4B—C5B—C6B −0.2 (4)
O4A—C5A—C6A—C7A 179.0 (2) O4B—C5B—C6B—C7B 179.6 (2)
C4A—C5A—C6A—C7A −0.6 (4) C4B—C5B—C6B—C7B 0.8 (4)
C5A—C6A—C7A—C2A −0.8 (4) C3B—C2B—C7B—C6B −0.6 (4)
C5A—C6A—C7A—C8A −179.5 (3) C1B—C2B—C7B—C6B −179.0 (2)
C3A—C2A—C7A—C6A 2.1 (4) C3B—C2B—C7B—C8B −179.8 (2)
C1A—C2A—C7A—C6A −176.9 (2) C1B—C2B—C7B—C8B 1.8 (3)
C3A—C2A—C7A—C8A −178.9 (2) C5B—C6B—C7B—C2B −0.4 (4)
C1A—C2A—C7A—C8A 2.1 (3) C5B—C6B—C7B—C8B 178.7 (2)
C1A—O1A—C8A—C7A 1.7 (3) C1B—O1B—C8B—C7B 2.5 (3)
C6A—C7A—C8A—O1A 176.6 (2) C2B—C7B—C8B—O1B −2.6 (3)
C2A—C7A—C8A—O1A −2.3 (3) C6B—C7B—C8B—O1B 178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6A—H6A···O1Bi 0.93 2.51 3.397 (3) 161
C8A—H8A1···O2Bii 0.97 2.53 3.337 (3) 140
C6B—H6B···O1Aiii 0.93 2.44 3.325 (3) 159

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2246).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dang, Q., Brown, B. S., Poelje, P. D., Colby, T. J. & Erion, M. D. (1999). Bioorg. Med. Chem. Lett.9, 1505–1510. [DOI] [PubMed]
  3. Fürstner, A., Thiel, O. R., Kindler, N. & Bartkowska, B. (2000). J. Org. Chem.65, 7990–7995. [DOI] [PubMed]
  4. Lee, Y., Fujiwara, Y., Ujita, K., Nagatomo, M., Ohata, H. & Shimizu, I. (2001). Bull. Chem. Soc. Jpn, 74, 1437–1443.
  5. Orito, K., Miyazawa, M. & Suginome, H. (1995). Tetrahedron, 51, 2489–2496.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Talapatra, B. & Monoj, K. R. (1980). Indian J. Chem. Sect. B, 19, 927–929.
  10. Zuo, L., Yao, S. Y. & Duan, W. H. (2008). Chin. J. Org. Chem.28, 1982–1985.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031183/wm2246sup1.cif

e-65-o2146-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031183/wm2246Isup2.hkl

e-65-o2146-Isup2.hkl (157.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES