Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):o2274. doi: 10.1107/S1600536809033704

N-(2,3-Dihydro-1,3-thia­zol-2-yl­idene)-4-[(2-hydroxy­benzyl­idene)amino]benzene­sulfonamide

Xin-Li Zhang a,*
PMCID: PMC2969909  PMID: 21577669

Abstract

The title compound, C16H13N3O3S2, was prepared by reaction of salicylaldehyde and sulfathia­zole in methanol. The dihedral angle between the central benzene ring and the thia­zole ring is 85.2 (2)° and that between the two benzene rings is 17.9 (2)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are held together by inter­molecular N—H⋯N and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Related literature

For the biological activity of Schiff bases, see: Billson et al. (2000); Carlton et al. (1995). For a related structure, see: Li et al. (2006).graphic file with name e-65-o2274-scheme1.jpg

Experimental

Crystal data

  • C16H13N3O3S2

  • M r = 359.41

  • Monoclinic, Inline graphic

  • a = 16.1693 (18) Å

  • b = 9.1211 (11) Å

  • c = 11.0292 (13) Å

  • β = 101.896 (1)°

  • V = 1591.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.40 × 0.37 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.871, T max = 0.932

  • 7737 measured reflections

  • 2806 independent reflections

  • 1927 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.04

  • 2806 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033704/ci2883sup1.cif

e-65-o2274-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033704/ci2883Isup2.hkl

e-65-o2274-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.97 (4) 1.73 (4) 2.636 (4) 154 (4)
N2—H2A⋯N3i 0.89 (3) 1.97 (3) 2.856 (3) 179 (3)
C6—H6⋯O1ii 0.93 2.58 3.334 (4) 139
C16—H16⋯O2iii 0.93 2.52 3.351 (4) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported financially by research grant No. 09JS068 from the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

The synthesis and characterization of Schiff base compounds have received a great deal of attention due to their biological activities, such as anti-bacterial, anti-cancer and anti-virus (Billson et al., 2000; Carlton et al., 1995). In this paper, we report the crystal structure of the title compound, a new Schiff-base ligand, (I).

Bbond lengths and angles in (I) are normal and they agree with those observed in a salicylaldehyde Schiff base (Li et al., 2006). The C7db// N1 bond length of 1.269 (4) Å conforms to the value for a double bond. The dihedral angle between C1-C6 benzene ring and thiazole ring is 85.2 (2)°. The dihedral angle between the two benzene rings is 17.9 (2)°. An intramolecular O3—H3A···N1 hydrogen bond generates an S(6) ring motif (Fig. 1).

The molecules are held together by N—H···N and C—H···O intermolecular hydrogen bonds (Table 1), forming a two-dimensional network parallel to the bc plane (Fig. 2).

Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. A methanol solution (10 ml) of salicylaldehyde (0.1 mmol, 12.2 mg) and sulfathiazloe (0.1 mmol, 25.5 mg) was stirred at room temperature for 30 min and then filtered. The filtrate was left to stand in air for 7 d, and the title compound was formed in slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 64%).

Refinement

Atoms H2A and H3A were located in a difference map and refined freely. The remaining H atoms were positioned geometrically [C-H = 0.93 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H13N3O3S2 F(000) = 744
Mr = 359.41 Dx = 1.500 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2137 reflections
a = 16.1693 (18) Å θ = 2.6–25.0°
b = 9.1211 (11) Å µ = 0.36 mm1
c = 11.0292 (13) Å T = 298 K
β = 101.896 (1)° Block, yellow
V = 1591.7 (3) Å3 0.40 × 0.37 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2806 independent reflections
Radiation source: fine-focus sealed tube 1927 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −19→19
Tmin = 0.871, Tmax = 0.932 k = −10→10
7737 measured reflections l = −8→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.04P)2 + 1.0601P] where P = (Fo2 + 2Fc2)/3
2806 reflections (Δ/σ)max = 0.001
224 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.54316 (16) 0.2823 (3) 0.3783 (2) 0.0517 (7)
N2 0.95632 (15) 0.6826 (3) 0.4499 (2) 0.0375 (6)
H2A 0.9910 (19) 0.640 (3) 0.513 (3) 0.055 (10)*
N3 0.93153 (14) 0.4585 (2) 0.3503 (2) 0.0370 (6)
O1 0.86589 (13) 0.4333 (2) 0.12312 (17) 0.0484 (5)
O2 0.91746 (13) 0.2184 (2) 0.2533 (2) 0.0506 (6)
O3 0.45423 (16) 0.1377 (3) 0.5144 (2) 0.0728 (8)
H3A 0.498 (3) 0.166 (5) 0.470 (4) 0.109*
S1 0.87791 (4) 0.35993 (8) 0.24101 (7) 0.0379 (2)
S2 0.86729 (5) 0.71804 (9) 0.23688 (7) 0.0475 (2)
C1 0.77728 (17) 0.3381 (3) 0.2773 (3) 0.0363 (7)
C2 0.70885 (18) 0.4196 (3) 0.2163 (3) 0.0441 (8)
H2 0.7157 0.4862 0.1553 0.053*
C3 0.63071 (18) 0.4019 (4) 0.2458 (3) 0.0494 (8)
H3B 0.5849 0.4559 0.2036 0.059*
C4 0.61981 (19) 0.3047 (4) 0.3375 (3) 0.0458 (8)
C5 0.68850 (19) 0.2214 (3) 0.3959 (3) 0.0482 (8)
H5 0.6814 0.1526 0.4551 0.058*
C6 0.76694 (19) 0.2390 (3) 0.3675 (3) 0.0438 (7)
H6 0.8127 0.1845 0.4090 0.053*
C7 0.4851 (2) 0.3782 (4) 0.3608 (3) 0.0555 (9)
H7 0.4919 0.4613 0.3151 0.067*
C8 0.40865 (19) 0.3643 (4) 0.4087 (3) 0.0496 (8)
C9 0.39700 (19) 0.2481 (4) 0.4865 (3) 0.0527 (8)
C10 0.3252 (2) 0.2432 (4) 0.5367 (3) 0.0633 (10)
H10 0.3174 0.1666 0.5889 0.076*
C11 0.2658 (2) 0.3519 (5) 0.5089 (3) 0.0662 (11)
H11 0.2180 0.3485 0.5435 0.079*
C12 0.2749 (2) 0.4648 (5) 0.4319 (4) 0.0655 (10)
H12 0.2333 0.5364 0.4125 0.079*
C13 0.3464 (2) 0.4713 (4) 0.3833 (3) 0.0625 (10)
H13 0.3534 0.5493 0.3320 0.075*
C14 0.92217 (16) 0.6028 (3) 0.3501 (2) 0.0336 (6)
C15 0.9408 (2) 0.8303 (3) 0.4400 (3) 0.0477 (8)
H15 0.9614 0.8969 0.5029 0.057*
C16 0.8939 (2) 0.8685 (4) 0.3323 (3) 0.0554 (9)
H16 0.8772 0.9641 0.3104 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0409 (15) 0.0615 (19) 0.0528 (17) −0.0026 (14) 0.0101 (13) 0.0003 (14)
N2 0.0399 (14) 0.0344 (14) 0.0362 (14) −0.0024 (11) 0.0033 (12) −0.0005 (12)
N3 0.0402 (13) 0.0306 (14) 0.0378 (13) 0.0001 (11) 0.0027 (11) −0.0001 (11)
O1 0.0591 (13) 0.0538 (14) 0.0323 (11) −0.0072 (11) 0.0092 (9) −0.0014 (10)
O2 0.0532 (13) 0.0349 (12) 0.0674 (15) 0.0032 (10) 0.0213 (11) −0.0078 (11)
O3 0.0607 (16) 0.0759 (19) 0.0865 (19) 0.0096 (14) 0.0256 (14) 0.0188 (15)
S1 0.0420 (4) 0.0339 (4) 0.0378 (4) −0.0013 (3) 0.0086 (3) −0.0048 (3)
S2 0.0595 (5) 0.0377 (5) 0.0424 (5) 0.0064 (4) 0.0033 (4) 0.0063 (4)
C1 0.0392 (16) 0.0360 (16) 0.0320 (15) −0.0005 (13) 0.0032 (12) −0.0047 (13)
C2 0.0451 (18) 0.0501 (19) 0.0344 (16) −0.0025 (15) 0.0018 (14) 0.0069 (15)
C3 0.0388 (17) 0.062 (2) 0.0437 (19) 0.0040 (15) 0.0005 (14) 0.0058 (16)
C4 0.0422 (18) 0.052 (2) 0.0427 (18) −0.0049 (15) 0.0083 (14) −0.0030 (15)
C5 0.0508 (19) 0.048 (2) 0.0475 (19) −0.0005 (16) 0.0134 (15) 0.0095 (15)
C6 0.0452 (18) 0.0428 (18) 0.0427 (18) 0.0046 (14) 0.0073 (14) 0.0029 (14)
C7 0.054 (2) 0.057 (2) 0.057 (2) −0.0035 (18) 0.0133 (17) 0.0027 (17)
C8 0.0437 (18) 0.056 (2) 0.0481 (19) −0.0037 (16) 0.0083 (15) −0.0077 (17)
C9 0.0405 (18) 0.062 (2) 0.053 (2) −0.0013 (17) 0.0044 (16) −0.0071 (18)
C10 0.054 (2) 0.078 (3) 0.060 (2) −0.011 (2) 0.0173 (18) −0.007 (2)
C11 0.045 (2) 0.092 (3) 0.064 (2) −0.004 (2) 0.0176 (18) −0.025 (2)
C12 0.052 (2) 0.072 (3) 0.070 (3) 0.0065 (19) 0.0075 (19) −0.019 (2)
C13 0.058 (2) 0.062 (2) 0.066 (2) 0.0037 (19) 0.0111 (19) −0.0043 (19)
C14 0.0300 (14) 0.0360 (17) 0.0356 (16) −0.0015 (12) 0.0087 (12) −0.0014 (13)
C15 0.056 (2) 0.0333 (18) 0.054 (2) −0.0060 (15) 0.0122 (16) −0.0056 (15)
C16 0.068 (2) 0.0320 (18) 0.066 (2) 0.0033 (16) 0.0122 (19) 0.0023 (16)

Geometric parameters (Å, °)

N1—C7 1.269 (4) C4—C5 1.389 (4)
N1—C4 1.418 (4) C5—C6 1.377 (4)
N2—C14 1.340 (3) C5—H5 0.93
N2—C15 1.371 (4) C6—H6 0.93
N2—H2A 0.89 (3) C7—C8 1.446 (4)
N3—C14 1.325 (3) C7—H7 0.93
N3—S1 1.607 (2) C8—C13 1.388 (4)
O1—S1 1.440 (2) C8—C9 1.401 (5)
O2—S1 1.434 (2) C9—C10 1.386 (5)
O3—C9 1.359 (4) C10—C11 1.371 (5)
O3—H3A 0.97 (4) C10—H10 0.93
S1—C1 1.765 (3) C11—C12 1.362 (5)
S2—C16 1.728 (3) C11—H11 0.93
S2—C14 1.730 (3) C12—C13 1.373 (5)
C1—C6 1.379 (4) C12—H12 0.93
C1—C2 1.387 (4) C13—H13 0.93
C2—C3 1.377 (4) C15—C16 1.318 (4)
C2—H2 0.93 C15—H15 0.93
C3—C4 1.384 (4) C16—H16 0.93
C3—H3B 0.93
C7—N1—C4 121.4 (3) N1—C7—C8 123.1 (3)
C14—N2—C15 115.6 (3) N1—C7—H7 118.5
C14—N2—H2A 119 (2) C8—C7—H7 118.5
C15—N2—H2A 125 (2) C13—C8—C9 118.2 (3)
C14—N3—S1 120.72 (19) C13—C8—C7 120.2 (3)
C9—O3—H3A 103 (3) C9—C8—C7 121.5 (3)
O2—S1—O1 118.59 (13) O3—C9—C10 118.2 (3)
O2—S1—N3 105.74 (12) O3—C9—C8 121.9 (3)
O1—S1—N3 111.64 (12) C10—C9—C8 119.9 (3)
O2—S1—C1 106.91 (13) C11—C10—C9 119.6 (4)
O1—S1—C1 107.36 (13) C11—C10—H10 120.2
N3—S1—C1 105.84 (12) C9—C10—H10 120.2
C16—S2—C14 90.97 (15) C12—C11—C10 121.7 (4)
C6—C1—C2 119.9 (3) C12—C11—H11 119.2
C6—C1—S1 119.5 (2) C10—C11—H11 119.2
C2—C1—S1 120.7 (2) C11—C12—C13 118.9 (4)
C3—C2—C1 120.1 (3) C11—C12—H12 120.5
C3—C2—H2 119.9 C13—C12—H12 120.5
C1—C2—H2 119.9 C12—C13—C8 121.7 (4)
C2—C3—C4 120.6 (3) C12—C13—H13 119.2
C2—C3—H3B 119.7 C8—C13—H13 119.2
C4—C3—H3B 119.7 N3—C14—N2 120.7 (3)
C3—C4—C5 118.6 (3) N3—C14—S2 130.3 (2)
C3—C4—N1 125.2 (3) N2—C14—S2 109.0 (2)
C5—C4—N1 116.2 (3) C16—C15—N2 113.1 (3)
C6—C5—C4 121.1 (3) C16—C15—H15 123.4
C6—C5—H5 119.4 N2—C15—H15 123.4
C4—C5—H5 119.4 C15—C16—S2 111.3 (2)
C5—C6—C1 119.6 (3) C15—C16—H16 124.3
C5—C6—H6 120.2 S2—C16—H16 124.3
C1—C6—H6 120.2
C14—N3—S1—O2 166.3 (2) N1—C7—C8—C13 −178.2 (3)
C14—N3—S1—O1 36.0 (3) N1—C7—C8—C9 5.1 (5)
C14—N3—S1—C1 −80.5 (2) C13—C8—C9—O3 178.9 (3)
O2—S1—C1—C6 34.9 (3) C7—C8—C9—O3 −4.3 (5)
O1—S1—C1—C6 163.2 (2) C13—C8—C9—C10 −0.7 (5)
N3—S1—C1—C6 −77.5 (3) C7—C8—C9—C10 176.1 (3)
O2—S1—C1—C2 −145.2 (2) O3—C9—C10—C11 −179.1 (3)
O1—S1—C1—C2 −16.9 (3) C8—C9—C10—C11 0.5 (5)
N3—S1—C1—C2 102.4 (2) C9—C10—C11—C12 0.6 (5)
C6—C1—C2—C3 0.1 (4) C10—C11—C12—C13 −1.5 (5)
S1—C1—C2—C3 −179.8 (2) C11—C12—C13—C8 1.3 (5)
C1—C2—C3—C4 0.9 (5) C9—C8—C13—C12 −0.2 (5)
C2—C3—C4—C5 −2.4 (5) C7—C8—C13—C12 −177.0 (3)
C2—C3—C4—N1 177.4 (3) S1—N3—C14—N2 169.4 (2)
C7—N1—C4—C3 −21.1 (5) S1—N3—C14—S2 −8.7 (4)
C7—N1—C4—C5 158.7 (3) C15—N2—C14—N3 −178.5 (3)
C3—C4—C5—C6 2.8 (5) C15—N2—C14—S2 0.0 (3)
N1—C4—C5—C6 −177.0 (3) C16—S2—C14—N3 178.1 (3)
C4—C5—C6—C1 −1.8 (5) C16—S2—C14—N2 −0.1 (2)
C2—C1—C6—C5 0.3 (4) C14—N2—C15—C16 0.3 (4)
S1—C1—C6—C5 −179.8 (2) N2—C15—C16—S2 −0.4 (4)
C4—N1—C7—C8 −175.4 (3) C14—S2—C16—C15 0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1 0.97 (4) 1.73 (4) 2.636 (4) 154 (4)
N2—H2A···N3i 0.89 (3) 1.97 (3) 2.856 (3) 179 (3)
C6—H6···O1ii 0.93 2.58 3.334 (4) 139
C16—H16···O2iii 0.93 2.52 3.351 (4) 148

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2883).

References

  1. Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun.3, 718–720.
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341–347. [DOI] [PubMed]
  4. Li, Z.-X., Zhang, X.-L. & Wang, X.-L. (2006). Acta Cryst. E62, o4513–o4514.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033704/ci2883sup1.cif

e-65-o2274-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033704/ci2883Isup2.hkl

e-65-o2274-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES