Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 19;65(Pt 9):o2182–o2183. doi: 10.1107/S1600536809031961

2,2,6,6-Tetra­kis(biphenyl-2-yl)-4,4,8,8-tetra­methyl­cyclo­tetra­siloxane

Erik P A Couzijn a, Martin Lutz b, Anthony L Spek b,*, Koop Lammertsma a
PMCID: PMC2969922  PMID: 21577587

Abstract

The title compound, [–Si(C12H9)2OSi(CH3)2O–]2, was obtained unintentionally as the product of an attempted crystallization of caesium bis­(biphenyl-2,2′-di­yl)fluoro­silicate from dimethyl­formamide. In the crystal, the mol­ecule is located on an inversion center and the siloxane ring adopts a twist-chair conformation with the two dimethyl-substituted Si atoms lying 0.7081 (5) Å out of the plane defined by the two bis­(biphenyl-2-yl)-substituted Si atoms and the four O atoms. In each Si(C12H9)2 unit, the orientation of one terminal phenyl ring relative to the phenyl­ene ring of the other biphenyl moiety suggests a parallel displaced π–π stacking inter­action [centroid distance = 4.2377 (11) Å and dihedral angle = 15.40 (9)°].

Related literature

For general background to stable compounds of penta­valent, anionic silicon bearing five organic substituents, see: Couzijn et al. (2004, 2006, 2009); Deerenberg et al. (2002); de Keijzer et al. (1997). For related structures, see: Malinovskii et al. (2007); Steinfink et al. (1955); Hensen et al. (1997). For puckering analysis,, see: Evans & Boeyens (1989). Bis(biphenyl-2,2′-di­yl)silane was synthesized using a slight modification of a literature procedure (Gilman & Gorsich, 1958).graphic file with name e-65-o2182-scheme1.jpg

Experimental

Crystal data

  • C52H48O4Si4

  • M r = 849.26

  • Orthorhombic, Inline graphic

  • a = 17.3418 (2) Å

  • b = 14.6488 (2) Å

  • c = 17.9584 (2) Å

  • V = 4562.09 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 110 K

  • 0.30 × 0.12 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 68467 measured reflections

  • 4317 independent reflections

  • 3247 reflections with I > 2σ(I)

  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.097

  • S = 1.07

  • 4317 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 and SORTAV (Blessing, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: manual editing of SHELXL output.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031961/vm2002sup1.cif

e-65-o2182-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031961/vm2002Isup2.hkl

e-65-o2182-Isup2.hkl (211.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Si1—O1 1.6287 (12)
Si1—O2 1.6290 (13)
Si1—C12 1.8684 (19)
Si1—C11 1.8746 (17)
Si2—O2i 1.6342 (13)
Si2—O1 1.6347 (12)
Si2—C2 1.8452 (19)
Si2—C1 1.8494 (19)
O1—Si1—O2 109.98 (7)
O2i—Si2—O1 107.88 (7)
Si1—O1—Si2 141.85 (8)
Si1—O2—Si2i 142.12 (8)
O1—Si2—O2i—Si1i −74.36 (14)
O2—Si1—O1—Si2 −52.51 (15)
O2i—Si2—O1—Si1 84.84 (14)
O1—Si1—O2—Si2i −37.42 (15)
C11—C61—C71—C81 81.5 (2)
C12—C62—C72—C82 56.1 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial assistance for this project was provided by the Dutch Organization for Scientific Research, Chemical Sciences (NWO-CW).

supplementary crystallographic information

Comment

Our research is focused on stable compounds of pentavalent, anionic silicon bearing five organic substituents (Couzijn et al., 2009; Couzijn et al., 2006; Couzijn et al., 2004). Such pentaorganosilicates are commonly proposed as intermediates for nucleophilic substitution reactions on silanes, but were only recently characterized in the condensed phase (e.g., de Keijzer et al., 1997; Deerenberg et al., 2002). In solution, these five-coordinate species undergo intramolecular substituent interchange via Berry pseudorotation and related processes. For a better understanding of the influence of the substituents on the stereomutational barrier, we synthesized bis(biphenyl-2,2'-diyl)fluorosilicate as the caesium and tetramethylammonium salts (Couzijn et al., 2009). While attempting to crystallize these salts, we obtained crystals of the title compound, [–Si(C12H9)2OSi(CH3)2O–]2, instead. This siloxane was most probably formed by reaction with silicone grease and adventitious water.

The title compound crystallizes with Ci point group symmetry, adopting a twist-chair conformation of the eight-membered siloxane ring (Fig. 1, Table 1). A ring puckering analysis (Evans & Boeyens, 1989) shows that the out-of-plane displacements in the ring can be described as a linear combination of the E3g (sin form) and E3g (cos form) normal modes, respectively, in a ratio of 0.891:0.109. The two bis(biphenyl)-substituted silicon atoms and the four oxygen atoms lie in a plane (RMS deviation 0.025 Å), whereas the two dimethyl-substituted silicon atoms are situated at 0.7081 (5)Å above and below this plane, respectively. Similar arrangements have been reported for octamethyl- (Steinfink et al., 1955) and 2,2,6,6-tetraphenyl-4,4,8,8-tetramethyltetrasiloxane (Malinovskii et al., 2007). Each Si(C12H9)2 unit features a parallel displaced π-π stacking interaction between one terminal phenyl ring and the phenylene ring of the other biphenyl moiety. The ring centroids are 4.2377 (11)Å apart and their vector makes an angle of 38.65° with the phenylene plane, while the ring planes make a dihedral angle of 15.40 (9)°.

Experimental

General procedures: dimethylformamide (DMF) was distilled from phenylzinc iodide and stored in a glovebox on 3Å molecular sieves. Commercial caesium fluoride was dried in vacuo at > 373 K. Bis(biphenyl-2,2'-diyl)silane was synthesized from 1,1'-dibromobiphenyl and tetrachlorosilane using a slight modification of a literature procedure (Gilman & Gorsich, 1958).

The title compound was obtained as follows. In the purified nitrogen atmosphere of a glovebox, a flame-dried Schlenk tube was charged with caesium fluoride (71.45 mg, 470 µmol) and bis(biphenyl-2,2'-diyl)silane (73.95 mg, 222 µmol). Anhydrous DMF (3 ml) was added and the mixture was stirred in the glovebox for 2 days. 19F and 1H NMR indicated almost quantitative conversion to the desired caesium bis(biphenyl-2,2'-diyl)fluorosilicate (Couzijn et al., 2009). The clear colorless supernate was filtered through glass wool in the glovebox and evaporated on a Schlenk line to afford the crude fluorosilicate as a white solid. Recrystallization of the fluorosilicate from DMF was initially performed by cooling the Schlenk tube in a freezer outside the glovebox. After repeated attempts, colorless blocks were obtained that were shown by X-ray analysis to be the title compound. Recrystallizations of the fluorosilicate using Young-type glassware (closed with a greaseless Teflon tap) in the freezer of a glovebox invariably afforded an amorphous solid.

Refinement

All H atoms were located in difference Fourier maps and refined using a riding model (including free rotation of the methyl substituents), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot of [–Si(C12H9)2OSi(CH3)2O–]2 with ellipsoids drawn at the 50% probability level. The parallel displaced π-π stacking interaction is indicated by a dashed line between the ring centroids. Hydrogen atoms are omitted for clarity. Symmetry operation i: 1 - x, 1 - y, 1 - z.

Crystal data

C52H48O4Si4 F(000) = 1792
Mr = 849.26 Dx = 1.236 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 88729 reflections
a = 17.3418 (2) Å θ = 1.0–25.7°
b = 14.6488 (2) Å µ = 0.18 mm1
c = 17.9584 (2) Å T = 110 K
V = 4562.09 (10) Å3 Needle, colourless
Z = 4 0.30 × 0.12 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer 3247 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.081
graphite θmax = 25.7°, θmin = 2.1°
φ and ω scans h = −21→21
68467 measured reflections k = −17→17
4317 independent reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: difference Fourier map
wR(F2) = 0.097 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.7858P] where P = (Fo2 + 2Fc2)/3
4317 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1 0.42728 (3) 0.37257 (3) 0.49618 (3) 0.02364 (14)
Si2 0.41400 (3) 0.57131 (3) 0.44096 (3) 0.02422 (14)
O1 0.42038 (7) 0.45998 (8) 0.44053 (6) 0.0257 (3)
O2 0.49862 (7) 0.38739 (8) 0.55394 (6) 0.0272 (3)
C1 0.35711 (12) 0.60943 (14) 0.52232 (11) 0.0382 (5)
H1A 0.3064 0.5798 0.5215 0.057*
H1B 0.3505 0.6758 0.5203 0.057*
H1C 0.3843 0.5928 0.5682 0.057*
C2 0.37276 (12) 0.60687 (14) 0.35079 (11) 0.0367 (5)
H2A 0.4062 0.5858 0.3103 0.055*
H2B 0.3689 0.6736 0.3492 0.055*
H2C 0.3213 0.5801 0.3450 0.055*
C11 0.45192 (10) 0.27253 (12) 0.43560 (9) 0.0243 (4)
C21 0.46918 (11) 0.28754 (13) 0.36038 (10) 0.0298 (4)
H21 0.4646 0.3475 0.3408 0.036*
C31 0.49264 (11) 0.21768 (13) 0.31368 (10) 0.0332 (5)
H31 0.5034 0.2298 0.2628 0.040*
C41 0.50025 (12) 0.13027 (13) 0.34161 (11) 0.0329 (5)
H41 0.5165 0.0820 0.3100 0.039*
C51 0.48408 (11) 0.11334 (13) 0.41570 (10) 0.0305 (4)
H51 0.4901 0.0533 0.4347 0.037*
C61 0.45917 (10) 0.18265 (12) 0.46293 (10) 0.0240 (4)
C71 0.43948 (10) 0.15854 (11) 0.54194 (10) 0.0252 (4)
C81 0.36294 (11) 0.14336 (12) 0.56199 (10) 0.0307 (4)
H81 0.3233 0.1526 0.5263 0.037*
C91 0.34381 (12) 0.11508 (13) 0.63306 (11) 0.0347 (5)
H91 0.2914 0.1045 0.6457 0.042*
C101 0.40081 (13) 0.10219 (13) 0.68579 (11) 0.0358 (5)
H101 0.3877 0.0827 0.7346 0.043*
C111 0.47717 (12) 0.11785 (13) 0.66701 (10) 0.0342 (5)
H111 0.5165 0.1096 0.7032 0.041*
C121 0.49649 (11) 0.14550 (12) 0.59550 (10) 0.0300 (4)
H121 0.5490 0.1556 0.5830 0.036*
C12 0.33957 (11) 0.36475 (12) 0.55627 (10) 0.0264 (4)
C22 0.35201 (12) 0.35934 (12) 0.63354 (10) 0.0319 (5)
H22 0.4034 0.3554 0.6517 0.038*
C32 0.29145 (13) 0.35950 (13) 0.68412 (11) 0.0386 (5)
H32 0.3015 0.3561 0.7360 0.046*
C42 0.21658 (13) 0.36468 (15) 0.65844 (12) 0.0433 (5)
H42 0.1749 0.3641 0.6927 0.052*
C52 0.20213 (12) 0.37074 (14) 0.58287 (11) 0.0388 (5)
H52 0.1504 0.3745 0.5658 0.047*
C62 0.26242 (11) 0.37139 (12) 0.53110 (10) 0.0298 (4)
C72 0.24184 (11) 0.38291 (13) 0.45090 (11) 0.0299 (4)
C82 0.26624 (11) 0.32206 (13) 0.39587 (10) 0.0328 (5)
H82 0.2966 0.2707 0.4094 0.039*
C92 0.24684 (12) 0.33543 (15) 0.32168 (11) 0.0392 (5)
H92 0.2643 0.2936 0.2850 0.047*
C102 0.20206 (12) 0.40966 (15) 0.30091 (11) 0.0399 (5)
H102 0.1891 0.4190 0.2501 0.048*
C112 0.17661 (12) 0.46966 (15) 0.35464 (11) 0.0392 (5)
H112 0.1457 0.5205 0.3409 0.047*
C122 0.19584 (11) 0.45615 (14) 0.42866 (11) 0.0346 (5)
H122 0.1773 0.4977 0.4651 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0279 (3) 0.0196 (3) 0.0235 (3) −0.0010 (2) 0.0023 (2) −0.0001 (2)
Si2 0.0271 (3) 0.0214 (3) 0.0241 (3) 0.0024 (2) 0.0005 (2) 0.0006 (2)
O1 0.0306 (7) 0.0207 (6) 0.0258 (6) −0.0004 (5) 0.0028 (5) 0.0004 (5)
O2 0.0308 (7) 0.0240 (6) 0.0266 (7) −0.0015 (5) 0.0002 (5) 0.0014 (5)
C1 0.0389 (12) 0.0349 (11) 0.0409 (12) 0.0038 (9) 0.0085 (9) −0.0055 (9)
C2 0.0380 (12) 0.0349 (11) 0.0370 (11) −0.0011 (9) −0.0074 (9) 0.0067 (9)
C11 0.0237 (9) 0.0242 (9) 0.0251 (9) −0.0016 (8) −0.0005 (7) −0.0011 (7)
C21 0.0359 (11) 0.0253 (10) 0.0282 (10) 0.0007 (8) 0.0037 (8) 0.0018 (8)
C31 0.0392 (12) 0.0334 (11) 0.0270 (10) 0.0006 (9) 0.0067 (8) −0.0029 (8)
C41 0.0392 (12) 0.0278 (10) 0.0317 (10) 0.0028 (9) 0.0079 (9) −0.0063 (8)
C51 0.0336 (11) 0.0220 (9) 0.0359 (11) 0.0030 (8) 0.0039 (9) −0.0004 (8)
C61 0.0214 (9) 0.0242 (9) 0.0263 (9) −0.0010 (7) 0.0000 (7) 0.0001 (7)
C71 0.0314 (10) 0.0155 (8) 0.0286 (10) 0.0006 (7) 0.0010 (8) −0.0017 (7)
C81 0.0306 (11) 0.0295 (10) 0.0321 (10) −0.0019 (8) −0.0002 (8) −0.0003 (8)
C91 0.0358 (12) 0.0348 (11) 0.0335 (11) −0.0058 (9) 0.0071 (9) 0.0017 (9)
C101 0.0553 (14) 0.0257 (10) 0.0264 (10) 0.0006 (9) 0.0074 (9) 0.0003 (8)
C111 0.0422 (12) 0.0309 (11) 0.0295 (11) 0.0062 (9) −0.0052 (9) −0.0010 (8)
C121 0.0299 (10) 0.0267 (10) 0.0335 (11) 0.0039 (8) 0.0000 (8) −0.0023 (8)
C12 0.0332 (10) 0.0194 (9) 0.0267 (9) −0.0025 (8) 0.0051 (8) −0.0018 (7)
C22 0.0390 (12) 0.0257 (10) 0.0309 (10) −0.0029 (9) 0.0045 (9) 0.0001 (8)
C32 0.0524 (14) 0.0356 (12) 0.0278 (10) −0.0059 (10) 0.0092 (10) −0.0010 (9)
C42 0.0449 (14) 0.0489 (13) 0.0361 (12) −0.0058 (11) 0.0183 (10) −0.0042 (10)
C52 0.0325 (12) 0.0449 (13) 0.0390 (12) −0.0043 (9) 0.0087 (9) −0.0041 (10)
C62 0.0349 (11) 0.0239 (10) 0.0304 (10) −0.0051 (8) 0.0064 (8) −0.0041 (8)
C72 0.0239 (10) 0.0297 (10) 0.0360 (10) −0.0065 (8) 0.0053 (8) −0.0033 (8)
C82 0.0298 (11) 0.0332 (11) 0.0354 (11) −0.0032 (9) 0.0027 (8) −0.0048 (9)
C92 0.0349 (12) 0.0465 (13) 0.0361 (11) −0.0050 (10) 0.0043 (9) −0.0096 (10)
C102 0.0331 (12) 0.0549 (14) 0.0318 (11) −0.0042 (10) 0.0011 (9) 0.0018 (10)
C112 0.0297 (11) 0.0446 (13) 0.0432 (12) 0.0014 (9) 0.0020 (9) 0.0052 (10)
C122 0.0282 (11) 0.0372 (11) 0.0386 (11) −0.0029 (9) 0.0065 (9) −0.0047 (9)

Geometric parameters (Å, °)

Si1—O1 1.6287 (12) C91—C101 1.382 (3)
Si1—O2 1.6290 (13) C91—H91 0.9500
Si1—C12 1.8684 (19) C101—C111 1.386 (3)
Si1—C11 1.8746 (17) C101—H101 0.9500
Si2—O2i 1.6342 (13) C111—C121 1.387 (3)
Si2—O1 1.6347 (12) C111—H111 0.9500
Si2—C2 1.8452 (19) C121—H121 0.9500
Si2—C1 1.8494 (19) C12—C22 1.407 (3)
O2—Si2i 1.6342 (13) C12—C62 1.415 (3)
C1—H1A 0.9800 C22—C32 1.388 (3)
C1—H1B 0.9800 C22—H22 0.9500
C1—H1C 0.9800 C32—C42 1.380 (3)
C2—H2A 0.9800 C32—H32 0.9500
C2—H2B 0.9800 C42—C52 1.383 (3)
C2—H2C 0.9800 C42—H42 0.9500
C11—C21 1.401 (2) C52—C62 1.399 (3)
C11—C61 1.411 (2) C52—H52 0.9500
C21—C31 1.384 (3) C62—C72 1.493 (3)
C21—H21 0.9500 C72—C122 1.395 (3)
C31—C41 1.381 (3) C72—C82 1.396 (3)
C31—H31 0.9500 C82—C92 1.388 (3)
C41—C51 1.382 (3) C82—H82 0.9500
C41—H41 0.9500 C92—C102 1.387 (3)
C51—C61 1.392 (2) C92—H92 0.9500
C51—H51 0.9500 C102—C112 1.378 (3)
C61—C71 1.501 (2) C102—H102 0.9500
C71—C121 1.393 (3) C112—C122 1.385 (3)
C71—C81 1.393 (3) C112—H112 0.9500
C81—C91 1.382 (3) C122—H122 0.9500
C81—H81 0.9500
O1—Si1—O2 109.98 (7) C71—C81—H81 119.5
O1—Si1—C12 110.05 (7) C101—C91—C81 120.13 (19)
O2—Si1—C12 105.00 (8) C101—C91—H91 119.9
O1—Si1—C11 105.97 (7) C81—C91—H91 119.9
O2—Si1—C11 107.49 (7) C91—C101—C111 119.62 (18)
C12—Si1—C11 118.22 (8) C91—C101—H101 120.2
O2i—Si2—O1 107.88 (7) C111—C101—H101 120.2
O2i—Si2—C2 107.71 (8) C101—C111—C121 120.29 (18)
O1—Si2—C2 107.68 (8) C101—C111—H111 119.9
O2i—Si2—C1 109.78 (8) C121—C111—H111 119.9
O1—Si2—C1 109.94 (8) C111—C121—C71 120.53 (18)
C2—Si2—C1 113.66 (10) C111—C121—H121 119.7
Si1—O1—Si2 141.85 (8) C71—C121—H121 119.7
Si1—O2—Si2i 142.12 (8) C22—C12—C62 117.63 (17)
Si2—C1—H1A 109.5 C22—C12—Si1 116.64 (14)
Si2—C1—H1B 109.5 C62—C12—Si1 125.51 (14)
H1A—C1—H1B 109.5 C32—C22—C12 121.96 (19)
Si2—C1—H1C 109.5 C32—C22—H22 119.0
H1A—C1—H1C 109.5 C12—C22—H22 119.0
H1B—C1—H1C 109.5 C42—C32—C22 119.55 (19)
Si2—C2—H2A 109.5 C42—C32—H32 120.2
Si2—C2—H2B 109.5 C22—C32—H32 120.2
H2A—C2—H2B 109.5 C32—C42—C52 120.13 (19)
Si2—C2—H2C 109.5 C32—C42—H42 119.9
H2A—C2—H2C 109.5 C52—C42—H42 119.9
H2B—C2—H2C 109.5 C42—C52—C62 121.1 (2)
C21—C11—C61 117.57 (16) C42—C52—H52 119.4
C21—C11—Si1 119.05 (13) C62—C52—H52 119.4
C61—C11—Si1 123.23 (13) C52—C62—C12 119.58 (18)
C31—C21—C11 122.07 (17) C52—C62—C72 117.58 (18)
C31—C21—H21 119.0 C12—C62—C72 122.79 (16)
C11—C21—H21 119.0 C122—C72—C82 117.48 (18)
C41—C31—C21 119.56 (17) C122—C72—C62 119.97 (17)
C41—C31—H31 120.2 C82—C72—C62 122.54 (17)
C21—C31—H31 120.2 C92—C82—C72 121.05 (19)
C31—C41—C51 119.77 (17) C92—C82—H82 119.5
C31—C41—H41 120.1 C72—C82—H82 119.5
C51—C41—H41 120.1 C102—C92—C82 120.29 (19)
C41—C51—C61 121.25 (17) C102—C92—H92 119.9
C41—C51—H51 119.4 C82—C92—H92 119.9
C61—C51—H51 119.4 C112—C102—C92 119.40 (19)
C51—C61—C11 119.77 (16) C112—C102—H102 120.3
C51—C61—C71 118.35 (16) C92—C102—H102 120.3
C11—C61—C71 121.87 (15) C102—C112—C122 120.3 (2)
C121—C71—C81 118.42 (17) C102—C112—H112 119.9
C121—C71—C61 121.58 (16) C122—C112—H112 119.9
C81—C71—C61 119.90 (16) C112—C122—C72 121.49 (19)
C91—C81—C71 121.01 (18) C112—C122—H122 119.3
C91—C81—H81 119.5 C72—C122—H122 119.3
O1—Si2—O2i—Si1i −74.36 (14) C81—C91—C101—C111 0.1 (3)
O2—Si1—O1—Si2 −52.51 (15) C91—C101—C111—C121 −0.6 (3)
C12—Si1—O1—Si2 62.69 (15) C101—C111—C121—C71 0.5 (3)
C11—Si1—O1—Si2 −168.40 (12) C81—C71—C121—C111 0.1 (3)
O2i—Si2—O1—Si1 84.84 (14) C61—C71—C121—C111 −176.07 (16)
C2—Si2—O1—Si1 −159.17 (13) O1—Si1—C12—C22 −127.17 (14)
C1—Si2—O1—Si1 −34.85 (16) O2—Si1—C12—C22 −8.85 (15)
O1—Si1—O2—Si2i −37.42 (15) C11—Si1—C12—C22 110.94 (14)
C12—Si1—O2—Si2i −155.78 (13) O1—Si1—C12—C62 47.32 (17)
C11—Si1—O2—Si2i 77.52 (14) O2—Si1—C12—C62 165.63 (15)
O1—Si1—C11—C21 7.60 (16) C11—Si1—C12—C62 −74.57 (17)
O2—Si1—C11—C21 −109.97 (15) C62—C12—C22—C32 0.6 (3)
C12—Si1—C11—C21 131.54 (15) Si1—C12—C22—C32 175.55 (14)
O1—Si1—C11—C61 −176.83 (14) C12—C22—C32—C42 0.3 (3)
O2—Si1—C11—C61 65.60 (16) C22—C32—C42—C52 −0.8 (3)
C12—Si1—C11—C61 −52.89 (18) C32—C42—C52—C62 0.3 (3)
C61—C11—C21—C31 −0.1 (3) C42—C52—C62—C12 0.7 (3)
Si1—C11—C21—C31 175.77 (15) C42—C52—C62—C72 −176.95 (19)
C11—C21—C31—C41 −0.7 (3) C22—C12—C62—C52 −1.1 (3)
C21—C31—C41—C51 0.3 (3) Si1—C12—C62—C52 −175.54 (14)
C31—C41—C51—C61 0.8 (3) C22—C12—C62—C72 176.41 (17)
C41—C51—C61—C11 −1.6 (3) Si1—C12—C62—C72 2.0 (3)
C41—C51—C61—C71 177.46 (18) C52—C62—C72—C122 52.9 (2)
C21—C11—C61—C51 1.1 (3) C12—C62—C72—C122 −124.6 (2)
Si1—C11—C61—C51 −174.49 (14) C52—C62—C72—C82 −126.4 (2)
C21—C11—C61—C71 −177.85 (16) C12—C62—C72—C82 56.1 (3)
Si1—C11—C61—C71 6.5 (2) C122—C72—C82—C92 1.5 (3)
C51—C61—C71—C121 78.6 (2) C62—C72—C82—C92 −179.20 (18)
C11—C61—C71—C121 −102.4 (2) C72—C82—C92—C102 −0.5 (3)
C51—C61—C71—C81 −97.5 (2) C82—C92—C102—C112 −0.4 (3)
C11—C61—C71—C81 81.5 (2) C92—C102—C112—C122 0.3 (3)
C121—C71—C81—C91 −0.7 (3) C102—C112—C122—C72 0.8 (3)
C61—C71—C81—C91 175.58 (17) C82—C72—C122—C112 −1.7 (3)
C71—C81—C91—C101 0.6 (3) C62—C72—C122—C112 179.02 (17)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2002).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  3. Couzijn, E. P. A., Ehlers, A. W., Schakel, M. & Lammertsma, K. (2006). J. Am. Chem. Soc.128, 13634–13639. [DOI] [PubMed]
  4. Couzijn, E. P. A., Schakel, M., de Kanter, F. J. J., Ehlers, A. W., Lutz, M., Spek, A. L. & Lammertsma, K. (2004). Angew. Chem. Int. Ed.43, 3440–3442. [DOI] [PubMed]
  5. Couzijn, E. P. A., Slootweg, J. C., Ehlers, A. W. & Lammertsma, K. (2009). J. Am. Chem. Soc.131, 3741–3751. [DOI] [PubMed]
  6. Deerenberg, S., Schakel, M., de Keijzer, A. H. J. F., Kranenburg, M., Lutz, M., Spek, A. L. & Lammertsma, K. (2002). Chem. Commun. pp. 348–349. [DOI] [PubMed]
  7. Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  8. Gilman, H. & Gorsich, R. D. (1958). J. Am. Chem. Soc.80, 1883–1884.
  9. Hensen, K., Gebhardt, F., Kettner, M., Pickel, P. & Bolte, M. (1997). Acta Cryst. C53, 1867–1869.
  10. Keijzer, A. H. J. F. de, de Kanter, F. J. J., Schakel, M., Osinga, V. P. & Klumpp, G. W. (1997). J. Organomet. Chem.548, 29–32.
  11. Malinovskii, S. T., Tesuro Vallina, A. & Stoeckli-Evans, H. (2007). J. Struct. Chem.48, 128–136.
  12. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Steinfink, H., Post, B. & Fankuchen, I. (1955). Acta Cryst.8, 420–424.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031961/vm2002sup1.cif

e-65-o2182-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031961/vm2002Isup2.hkl

e-65-o2182-Isup2.hkl (211.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES