Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2090. doi: 10.1107/S1600536809029274

4,4,5,5-Tetra­methyl-2-(3,4,5-trimethoxy­phen­yl)imidazolidine-1-oxyl 3-oxide

Hai-Bo Wang a, Lin-Lin Jing a, Peng Gao a, Xiao-Li Sun a,*
PMCID: PMC2969929  PMID: 21577507

Abstract

In the title nitronyl nitroxide radical compound, C16C23N2O5, the imidazole and benzene rings are twisted with respect to each other, making a dihedral angle of 26.2 (4)°. The imidazole ring adopts a half-chair conformation. Weak C—H⋯π inter­actions are also found.

Related literature

For the preparation of the title compound see: Ullman et al. (1974). For related structures, see: Feher et al. (2008); Gao et al. (2009); Qin et al. (2009); Cirujeda et al. (1995); Matsushita et al. (1997). For the coordination properties of the title compound and its use in the formation of mol­ecule-based magnetic materials, see: Takui et al. (2009). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-o2090-scheme1.jpg

Experimental

Crystal data

  • C16H23N2O5

  • M r = 323.36

  • Orthorhombic, Inline graphic

  • a = 20.623 (3) Å

  • b = 7.2168 (12) Å

  • c = 22.831 (4) Å

  • V = 3398.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.17 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: none

  • 15858 measured reflections

  • 3027 independent reflections

  • 1519 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.119

  • S = 1.06

  • 3027 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029274/dn2472sup1.cif

e-65-o2090-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029274/dn2472Isup2.hkl

e-65-o2090-Isup2.hkl (148.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg2i 0.96 2.80 3.644 (2) 147

Symmetry code: (i) Inline graphic. Cg2 is the centroid of the phenyl ring.

Acknowledgments

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

supplementary crystallographic information

Comment

The title radical compound was obtained from the oxidation of 4,4,5,5- tetramethyl-2-(3,4,5-trimethoxybenzenyl)-imidazolidine-1,3-diol, which was prepared by the condensation of 3,4,5-trimethoxybenzaldehyde with 2,3-Dimethyl-2,3-bis(hydroxyl-amino)butane. The title compound was used for coordination with many metal cations, such as Mn2+, Cu2+, and Ni2+, in order to form some molecule-based magnetic materials (Takui et al., 2009).

The molecular structure of the title compound is shown in Fig 1. Examination of bond length within the five membered rings shows an average structure as observed with related compounds (Cirujeda et al., 1995; Feher et al., 2008; Gao et al., 2009; Matsushita et al., 1997; Qin et al., 2009).

The imidazole and the phenyl rings are twisted with respect to each other making a dihedral angle of 26.2 (4)°. The imidazole ring has an half-chair conformation with puckering parameters O(2)=. 0.0275 (2)Å and φ= 233.0 (5)°(Cremer & Pople, 1975). The crystal structure is stabilized by weak C—H···π (Table 1, Cg2 is the centroid of the phenyl ring) and van der Waals interactions.

Experimental

The compound 4,4,5,5-tetramethyl-2-(3,4,5-trimethoxybenzenyl)-imidazolidine -1-oxyl-3-oxide was prepared according to the method reported by Ullman et al. (1974). 2,3-Dimethyl-2,3-bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and 3,4,5-trimethoxybenzaldehyde (1.96 g, 10.0 mmol) were dissolved in a methanol-water mixture (2:1), which was stirred for 5 h at reflux temperature, then cooled to room temperature and filtered. The white powder was washed by methanol. This product was dried under vaccum, then, it was suspended in dichloromethane (50.0 ml) and the water solution (30.0 ml) of NaIO4 (1.7 g) was added and stirred at ice bath for 20 min. The reaction mixture was extracted by dichloromethane (30.0 ml) for twice and the organic layer was combined and dried over Na2SO4. Then the solvent was removed to give a dark blue residue which was purified by a flash column chromatography (eluent, ether and petroleum ether, the ratio of volume is 2 to 1) to yield the title compound (I) as a dark blue powder. Single crystals of compound (I) were obtained from the mixed solution of n-heptane and dichloromethane (the ratio of volume is 1 to 1).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C16H23N2O5 F(000) = 1384
Mr = 323.36 Dx = 1.264 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1322 reflections
a = 20.623 (3) Å θ = 3.1–18.2°
b = 7.2168 (12) Å µ = 0.09 mm1
c = 22.831 (4) Å T = 296 K
V = 3398.0 (10) Å3 Block, blue
Z = 8 0.32 × 0.25 × 0.17 mm

Data collection

Bruker SMART APEX2 diffractometer 1519 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.062
graphite θmax = 25.1°, θmin = 1.8°
Detector resolution: 0 pixels mm-1 h = −12→24
φ and ω scans k = −8→8
15858 measured reflections l = −27→26
3027 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3027 reflections Δρmax = 0.17 e Å3
216 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.06793 (9) 0.2073 (3) 0.49665 (8) 0.0570 (5)
N2 0.15280 (9) 0.0432 (3) 0.47376 (8) 0.0576 (5)
O1 0.01712 (9) 0.2652 (3) 0.52296 (7) 0.0913 (6)
O2 0.20243 (8) −0.0630 (3) 0.47707 (7) 0.0903 (6)
O3 0.07153 (8) 0.1394 (2) 0.72841 (6) 0.0717 (5)
O4 0.12645 (7) −0.1894 (2) 0.74689 (6) 0.0720 (5)
O5 0.17240 (8) −0.3947 (2) 0.65885 (7) 0.0743 (5)
C1 0.08745 (10) 0.2830 (3) 0.43780 (9) 0.0511 (6)
C2 0.13132 (10) 0.1227 (3) 0.41649 (9) 0.0548 (6)
C3 0.11082 (10) 0.0839 (3) 0.51744 (9) 0.0506 (6)
C4 0.11306 (10) 0.0103 (3) 0.57690 (9) 0.0505 (6)
C5 0.14140 (10) −0.1615 (3) 0.58697 (10) 0.0533 (6)
H5 0.1574 −0.2313 0.5559 0.064*
C6 0.14551 (10) −0.2276 (3) 0.64375 (10) 0.0550 (6)
C7 0.12210 (10) −0.1231 (3) 0.69035 (10) 0.0542 (6)
C8 0.09320 (11) 0.0479 (3) 0.67984 (9) 0.0543 (6)
C9 0.08840 (10) 0.1132 (3) 0.62324 (9) 0.0539 (6)
H9 0.0686 0.2266 0.6161 0.065*
C10 0.03918 (13) 0.3130 (4) 0.71996 (10) 0.0823 (8)
H10A 0.0693 0.4022 0.7047 0.123*
H10B 0.0224 0.3562 0.7567 0.123*
H10C 0.0041 0.2971 0.6928 0.123*
C11 0.18747 (13) −0.1598 (5) 0.77318 (11) 0.1017 (10)
H11A 0.2203 −0.2234 0.7511 0.153*
H11B 0.1868 −0.2064 0.8126 0.153*
H11C 0.1968 −0.0295 0.7737 0.153*
C12 0.19952 (13) −0.5035 (4) 0.61337 (12) 0.0869 (8)
H12A 0.1663 −0.5354 0.5857 0.130*
H12B 0.2177 −0.6146 0.6296 0.130*
H12C 0.2329 −0.4343 0.5940 0.130*
C13 0.12386 (12) 0.4629 (3) 0.45043 (11) 0.0726 (7)
H13A 0.0965 0.5449 0.4724 0.109*
H13B 0.1358 0.5209 0.4141 0.109*
H13C 0.1622 0.4360 0.4727 0.109*
C14 0.02814 (11) 0.3224 (3) 0.40075 (10) 0.0722 (7)
H14A 0.0019 0.2129 0.3984 0.108*
H14B 0.0414 0.3586 0.3621 0.108*
H14C 0.0035 0.4207 0.4183 0.108*
C15 0.18983 (12) 0.1816 (4) 0.38065 (10) 0.0783 (8)
H15A 0.2168 0.2619 0.4037 0.117*
H15B 0.1756 0.2462 0.3462 0.117*
H15C 0.2141 0.0739 0.3694 0.117*
C16 0.09402 (13) −0.0316 (3) 0.38572 (10) 0.0765 (8)
H16A 0.1214 −0.1385 0.3818 0.115*
H16B 0.0808 0.0099 0.3476 0.115*
H16C 0.0564 −0.0633 0.4084 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0488 (12) 0.0639 (13) 0.0583 (12) 0.0123 (10) 0.0125 (10) 0.0033 (10)
N2 0.0509 (11) 0.0636 (13) 0.0583 (13) 0.0127 (11) 0.0095 (10) 0.0047 (10)
O1 0.0890 (14) 0.1057 (15) 0.0792 (11) 0.0366 (11) 0.0233 (11) 0.0175 (10)
O2 0.0745 (12) 0.1091 (15) 0.0872 (12) 0.0401 (11) 0.0215 (10) 0.0192 (10)
O3 0.0827 (13) 0.0798 (12) 0.0526 (10) 0.0157 (10) 0.0074 (8) −0.0006 (9)
O4 0.0655 (12) 0.0913 (13) 0.0591 (11) −0.0002 (9) −0.0019 (9) 0.0204 (9)
O5 0.0798 (12) 0.0648 (12) 0.0783 (11) 0.0196 (10) 0.0001 (10) 0.0135 (10)
C1 0.0527 (14) 0.0518 (15) 0.0487 (13) 0.0028 (12) 0.0001 (11) 0.0055 (11)
C2 0.0590 (15) 0.0580 (15) 0.0474 (13) 0.0022 (12) 0.0058 (11) 0.0036 (12)
C3 0.0454 (13) 0.0516 (14) 0.0548 (14) 0.0060 (12) 0.0035 (12) 0.0021 (11)
C4 0.0450 (13) 0.0560 (15) 0.0504 (14) −0.0007 (12) 0.0011 (11) 0.0049 (12)
C5 0.0475 (14) 0.0561 (16) 0.0561 (15) 0.0046 (11) 0.0013 (11) −0.0007 (12)
C6 0.0453 (14) 0.0575 (16) 0.0623 (16) 0.0001 (12) −0.0007 (12) 0.0082 (13)
C7 0.0478 (14) 0.0651 (17) 0.0496 (14) −0.0037 (13) 0.0000 (11) 0.0112 (13)
C8 0.0517 (14) 0.0636 (16) 0.0474 (15) −0.0029 (13) 0.0051 (11) −0.0016 (12)
C9 0.0533 (14) 0.0544 (14) 0.0539 (15) 0.0038 (12) 0.0032 (11) 0.0032 (12)
C10 0.096 (2) 0.081 (2) 0.0701 (16) 0.0165 (17) 0.0143 (15) −0.0100 (15)
C11 0.089 (2) 0.144 (3) 0.0727 (17) −0.012 (2) −0.0241 (17) 0.0182 (18)
C12 0.087 (2) 0.0655 (18) 0.108 (2) 0.0200 (15) 0.0072 (18) 0.0042 (16)
C13 0.0812 (19) 0.0569 (16) 0.0797 (17) −0.0028 (14) 0.0029 (14) 0.0004 (13)
C14 0.0669 (17) 0.0819 (19) 0.0679 (15) 0.0090 (14) −0.0072 (13) 0.0070 (14)
C15 0.0740 (19) 0.087 (2) 0.0736 (16) 0.0027 (15) 0.0289 (14) 0.0119 (14)
C16 0.097 (2) 0.0662 (17) 0.0662 (16) −0.0037 (15) −0.0008 (15) −0.0077 (13)

Geometric parameters (Å, °)

N1—O1 1.278 (2) C8—C9 1.379 (3)
N1—C3 1.342 (2) C9—H9 0.9300
N1—C1 1.506 (3) C10—H10A 0.9600
N2—O2 1.281 (2) C10—H10B 0.9600
N2—C3 1.353 (2) C10—H10C 0.9600
N2—C2 1.495 (3) C11—H11A 0.9600
O3—C8 1.366 (2) C11—H11B 0.9600
O3—C10 1.433 (3) C11—H11C 0.9600
O4—C7 1.380 (2) C12—H12A 0.9600
O4—C11 1.410 (3) C12—H12B 0.9600
O5—C6 1.372 (3) C12—H12C 0.9600
O5—C12 1.417 (3) C13—H13A 0.9600
C1—C14 1.514 (3) C13—H13B 0.9600
C1—C13 1.527 (3) C13—H13C 0.9600
C1—C2 1.547 (3) C14—H14A 0.9600
C2—C15 1.519 (3) C14—H14B 0.9600
C2—C16 1.525 (3) C14—H14C 0.9600
C3—C4 1.459 (3) C15—H15A 0.9600
C4—C9 1.389 (3) C15—H15B 0.9600
C4—C5 1.390 (3) C15—H15C 0.9600
C5—C6 1.384 (3) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.391 (3) C16—H16C 0.9600
C7—C8 1.391 (3)
O1—N1—C3 126.26 (18) O3—C10—H10A 109.5
O1—N1—C1 121.31 (18) O3—C10—H10B 109.5
C3—N1—C1 112.36 (17) H10A—C10—H10B 109.5
O2—N2—C3 126.70 (19) O3—C10—H10C 109.5
O2—N2—C2 121.20 (17) H10A—C10—H10C 109.5
C3—N2—C2 111.83 (17) H10B—C10—H10C 109.5
C8—O3—C10 117.76 (17) O4—C11—H11A 109.5
C7—O4—C11 113.82 (18) O4—C11—H11B 109.5
C6—O5—C12 117.56 (18) H11A—C11—H11B 109.5
N1—C1—C14 110.53 (17) O4—C11—H11C 109.5
N1—C1—C13 105.77 (17) H11A—C11—H11C 109.5
C14—C1—C13 110.08 (19) H11B—C11—H11C 109.5
N1—C1—C2 99.52 (16) O5—C12—H12A 109.5
C14—C1—C2 115.92 (18) O5—C12—H12B 109.5
C13—C1—C2 114.05 (18) H12A—C12—H12B 109.5
N2—C2—C15 110.07 (18) O5—C12—H12C 109.5
N2—C2—C16 105.78 (18) H12A—C12—H12C 109.5
C15—C2—C16 110.91 (19) H12B—C12—H12C 109.5
N2—C2—C1 100.67 (16) C1—C13—H13A 109.5
C15—C2—C1 115.15 (19) C1—C13—H13B 109.5
C16—C2—C1 113.33 (18) H13A—C13—H13B 109.5
N1—C3—N2 107.77 (18) C1—C13—H13C 109.5
N1—C3—C4 126.3 (2) H13A—C13—H13C 109.5
N2—C3—C4 125.9 (2) H13B—C13—H13C 109.5
C9—C4—C5 120.32 (19) C1—C14—H14A 109.5
C9—C4—C3 120.2 (2) C1—C14—H14B 109.5
C5—C4—C3 119.5 (2) H14A—C14—H14B 109.5
C6—C5—C4 119.2 (2) C1—C14—H14C 109.5
C6—C5—H5 120.4 H14A—C14—H14C 109.5
C4—C5—H5 120.4 H14B—C14—H14C 109.5
O5—C6—C5 124.3 (2) C2—C15—H15A 109.5
O5—C6—C7 115.1 (2) C2—C15—H15B 109.5
C5—C6—C7 120.6 (2) H15A—C15—H15B 109.5
O4—C7—C6 120.4 (2) C2—C15—H15C 109.5
O4—C7—C8 119.8 (2) H15A—C15—H15C 109.5
C6—C7—C8 119.9 (2) H15B—C15—H15C 109.5
O3—C8—C9 124.9 (2) C2—C16—H16A 109.5
O3—C8—C7 115.40 (19) C2—C16—H16B 109.5
C9—C8—C7 119.7 (2) H16A—C16—H16B 109.5
C8—C9—C4 120.3 (2) C2—C16—H16C 109.5
C8—C9—H9 119.8 H16A—C16—H16C 109.5
C4—C9—H9 119.8 H16B—C16—H16C 109.5
O1—N1—C1—C14 −36.5 (3) C2—N2—C3—C4 172.4 (2)
C3—N1—C1—C14 146.39 (19) N1—C3—C4—C9 −26.4 (3)
O1—N1—C1—C13 82.7 (2) N2—C3—C4—C9 151.8 (2)
C3—N1—C1—C13 −94.5 (2) N1—C3—C4—C5 155.1 (2)
O1—N1—C1—C2 −158.87 (19) N2—C3—C4—C5 −26.7 (3)
C3—N1—C1—C2 24.0 (2) C9—C4—C5—C6 −0.9 (3)
O2—N2—C2—C15 −40.2 (3) C3—C4—C5—C6 177.65 (19)
C3—N2—C2—C15 145.36 (19) C12—O5—C6—C5 2.1 (3)
O2—N2—C2—C16 79.7 (2) C12—O5—C6—C7 −177.4 (2)
C3—N2—C2—C16 −94.8 (2) C4—C5—C6—O5 −179.98 (19)
O2—N2—C2—C1 −162.2 (2) C4—C5—C6—C7 −0.5 (3)
C3—N2—C2—C1 23.4 (2) C11—O4—C7—C6 82.3 (3)
N1—C1—C2—N2 −25.95 (19) C11—O4—C7—C8 −98.7 (3)
C14—C1—C2—N2 −144.43 (19) O5—C6—C7—O4 −0.3 (3)
C13—C1—C2—N2 86.2 (2) C5—C6—C7—O4 −179.84 (19)
N1—C1—C2—C15 −144.27 (19) O5—C6—C7—C8 −179.30 (19)
C14—C1—C2—C15 97.3 (2) C5—C6—C7—C8 1.2 (3)
C13—C1—C2—C15 −32.1 (3) C10—O3—C8—C9 2.5 (3)
N1—C1—C2—C16 86.5 (2) C10—O3—C8—C7 −177.7 (2)
C14—C1—C2—C16 −31.9 (3) O4—C7—C8—O3 0.7 (3)
C13—C1—C2—C16 −161.33 (18) C6—C7—C8—O3 179.72 (19)
O1—N1—C3—N2 172.6 (2) O4—C7—C8—C9 −179.5 (2)
C1—N1—C3—N2 −10.4 (2) C6—C7—C8—C9 −0.5 (3)
O1—N1—C3—C4 −8.9 (4) O3—C8—C9—C4 178.9 (2)
C1—N1—C3—C4 168.07 (19) C7—C8—C9—C4 −0.9 (3)
O2—N2—C3—N1 176.8 (2) C5—C4—C9—C8 1.6 (3)
C2—N2—C3—N1 −9.1 (2) C3—C4—C9—C8 −176.9 (2)
O2—N2—C3—C4 −1.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14A···Cg2i 0.96 2.80 3.644 (2) 147

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2472).

References

  1. Bruker (2007). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Cirujeda, J., Mas, M., Molins, E., Panthou de, F. L., Laugier, J., Park, J. G., Paulsen, C., Rey, P., Rovira, C. & Veciana, J. (1995). Chem. Commun pp. 709–710.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Feher, R., Wurst, K., Amabilino, D. B. & Veciana, J. (2008). Inorg. Chim. Acta, 361, 4094–4099.
  7. Gao, Z.-Y., Chang, J.-L., Xian, D. & Jiang, K. (2009). Acta Cryst. E65, o1062. [DOI] [PMC free article] [PubMed]
  8. Matsushita, M. M., Izuoka, A., Sugawara, T., Kobayashi, T., Wada, N., Takeda, N. & Ishikawa, M. (1997). J. Am. Chem. Soc 119, 4369–4379.
  9. Qin, X.-Y., Wang, P.-A. & Sun, X.-L. (2009). Acta Cryst. E65, o1031. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Takui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc 131, 4670–4673. [DOI] [PubMed]
  12. Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J Am. Chem. Soc 96, 7049–7053.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029274/dn2472sup1.cif

e-65-o2090-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029274/dn2472Isup2.hkl

e-65-o2090-Isup2.hkl (148.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES