Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2079–o2080. doi: 10.1107/S160053680903030X

4-[(4-Fluoro­benzyl­idene)amino]-3-[1-(4-isobutyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun a,*,, Wan-Sin Loh a, A C Vinayaka b, B Kalluraya b
PMCID: PMC2969932  PMID: 21577498

Abstract

In the title compound, C21H23FN4S, the benzene rings of the isobutyl­phenyl and fluoro­benzene units form dihedral angles of 75.89 (7) and 13.26 (7)°, respectively, with the triazole ring. An intra­molecular C—H⋯S hydrogen-bonding contact generates an S(6) ring motif. In the crystal packing, pairs of N—H⋯S hydrogen bonds link neighbouring mol­ecules into inversion dimers, forming R 2 2(8) ring motifs. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For pharmacological activity of triazoles, see: Göknur et al. (2005). For the anti-tumor activity of triazole derivatives, see: Demirbas et al. (2002, 2004). For the synthesis of related heterocyclic compounds, see: Fun et al. (2008, 2009a ). For a related structure, see: Fun et al. (2009b ). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). graphic file with name e-65-o2079-scheme1.jpg

Experimental

Crystal data

  • C21H23FN4S

  • M r = 382.49

  • Triclinic, Inline graphic

  • a = 5.7883 (1) Å

  • b = 9.9001 (1) Å

  • c = 18.4972 (3) Å

  • α = 98.132 (1)°

  • β = 97.087 (1)°

  • γ = 105.997 (1)°

  • V = 993.90 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.46 × 0.20 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.919, T max = 0.987

  • 31031 measured reflections

  • 7460 independent reflections

  • 5798 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.135

  • S = 1.06

  • 7460 reflections

  • 336 parameters

  • All H-atom parameters refined

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903030X/tk2518sup1.cif

e-65-o2079-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903030X/tk2518Isup2.hkl

e-65-o2079-Isup2.hkl (365KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.85 (2) 2.43 (2) 3.2763 (12) 172.3 (18)
C7—H7A⋯S1 0.96 (2) 2.50 (2) 3.2415 (13) 133.2 (16)
C4—H4ACg1ii 1.01 (2) 2.85 (2) 3.6276 (16) 133.8 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C11–C16 ring.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks USM for a student assistantship.

supplementary crystallographic information

Comment

1,2,4-Triazoles and their derivatives represent a rapidly developing field in modern heterocyclic chemistry. Similarly, ibuprofen belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) with diverse pharmacological activities. The analgesic, anti-asthematic, diuretic, anti-hypertensive and anti-inflammatory properties associated with these drugs have made them important chemotherapeutic agents (Göknur et al., 2005). Our earlier studies involved the synthesis of heterocyclic compounds incorporating ibuprofen and 1,2,4-triazole fragments in the structures (Fun et al., 2008, 2009a). Schiff base derivatives of 1,2,4-triazole are known to possess anti-tumor activity (Demirbas et al., 2004). Similarly, some Schiff base derivatives of acetic acid hydrazides containing 1,2,4-triazol-5-one ring have displayed anti-tumoral activity only against breast cancer, while 2-phenyl ethylidenamino and 2-phenyl ethylamino derivatives of 4-amino-1,2,4-triazol-5-ones have been found to be effective towards non-small cell lung cancer, cranial neural crest cancer, and breast cancer (Demirbas et al., 2002). In this connection and in continuation of our interest in the synthesis of chemically and biologically important heterocycles, we now report a substituted 1,2,4-triazole Schiff base carrying the ibuprofen moiety, (I).

In (I), Fig. 1, the triazole ring (C8/C9/N2–N4) is approximately planar with a maximum deviation of 0.009 (1)° at atom N2. The dihedral angles formed by the triazole ring with C1–C6 and C11–C16 benzene rings are 13.26 (7) and 75.89 (7)°, respectively. Bond lengths and angles are comparable to a closely related structure (Fun et. al., 2009b). An intramolecular C7—H7A···S1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995), Fig. 1.

In the crystal packing (Fig. 2), pairs of N3—H1N3···S1 hydrogen bonds link molecules into dimers forming R22(8) ring motifs; these stack along the a axis. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Experimental

Compound (I) was obtained by refluxing 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 4-fluorobenzaldehyde (0.01 mol) in ethanol (50 ml) with 3 drops of concentrated sulfuric acid for 6 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Crystals were obtained from the slow evaporation of an ethanol solution of (I).

Refinement

All H atoms were located from difference Fourier maps and allowed to refine freely [N—H = 0.85 (2) Å; range of C—H = 0.91 (2) - 1.07 (2) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular interaction is shown by a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the a axis, showing the R22(8) ring motifs. Intermolecular hydrogen bonds are shown by dashed lines.

Crystal data

C21H23FN4S Z = 2
Mr = 382.49 F(000) = 404
Triclinic, P1 Dx = 1.278 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.7883 (1) Å Cell parameters from 8265 reflections
b = 9.9001 (1) Å θ = 2.3–32.9°
c = 18.4972 (3) Å µ = 0.19 mm1
α = 98.132 (1)° T = 100 K
β = 97.087 (1)° Plate, colourless
γ = 105.997 (1)° 0.46 × 0.20 × 0.07 mm
V = 993.90 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7460 independent reflections
Radiation source: fine-focus sealed tube 5798 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 33.1°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.919, Tmax = 0.987 k = −13→15
31031 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2752P] where P = (Fo2 + 2Fc2)/3
7460 reflections (Δ/σ)max = 0.001
336 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.23157 (6) 0.40057 (3) 0.062645 (17) 0.02273 (9)
F1 1.07698 (17) 0.46076 (11) 0.34727 (5) 0.0384 (2)
N2 0.09265 (19) 0.67553 (11) 0.11123 (6) 0.0200 (2)
N3 −0.2432 (2) 0.66569 (12) 0.04603 (6) 0.0240 (2)
N4 −0.1117 (2) 0.80841 (12) 0.06196 (6) 0.0262 (2)
C1 0.7243 (2) 0.63478 (14) 0.23907 (7) 0.0230 (2)
C2 0.9179 (2) 0.61374 (15) 0.28295 (8) 0.0265 (3)
C3 0.8872 (3) 0.48191 (16) 0.30420 (8) 0.0275 (3)
C4 0.6725 (3) 0.37142 (15) 0.28390 (8) 0.0291 (3)
C5 0.4798 (3) 0.39514 (15) 0.24054 (8) 0.0270 (3)
C6 0.5020 (2) 0.52512 (13) 0.21738 (7) 0.0220 (2)
C7 0.2896 (2) 0.54128 (14) 0.17189 (7) 0.0239 (2)
N1 0.29999 (19) 0.65984 (12) 0.15103 (6) 0.0219 (2)
C8 −0.1269 (2) 0.57973 (13) 0.07367 (6) 0.0207 (2)
C9 0.0928 (2) 0.81133 (13) 0.10125 (7) 0.0227 (2)
C10 0.3012 (3) 0.94216 (14) 0.13560 (7) 0.0248 (3)
C11 0.2842 (2) 0.98403 (13) 0.21717 (7) 0.0210 (2)
C12 0.4468 (2) 0.96157 (14) 0.27274 (7) 0.0226 (2)
C13 0.4346 (2) 1.00047 (13) 0.34731 (7) 0.0215 (2)
C14 0.2607 (2) 1.06384 (13) 0.36891 (7) 0.0198 (2)
C15 0.0957 (2) 1.08449 (14) 0.31282 (7) 0.0230 (2)
C16 0.1051 (2) 1.04396 (14) 0.23829 (7) 0.0239 (2)
C17 0.2509 (2) 1.11216 (14) 0.44918 (7) 0.0232 (2)
C18 0.3959 (2) 1.26943 (14) 0.48054 (7) 0.0231 (2)
C19 0.3044 (3) 1.06203 (16) 0.09161 (9) 0.0338 (3)
C20 0.6693 (3) 1.29519 (17) 0.48410 (9) 0.0302 (3)
C21 0.3413 (3) 1.31418 (18) 0.55751 (8) 0.0324 (3)
H1A 0.739 (3) 0.725 (2) 0.2216 (10) 0.031 (4)*
H2A 1.074 (4) 0.684 (2) 0.2993 (11) 0.042 (5)*
H4A 0.661 (4) 0.277 (2) 0.3010 (11) 0.042 (5)*
H5A 0.325 (4) 0.318 (2) 0.2259 (11) 0.038 (5)*
H7A 0.142 (4) 0.462 (2) 0.1596 (11) 0.037 (5)*
H10A 0.470 (4) 0.922 (2) 0.1304 (11) 0.035 (5)*
H12A 0.570 (3) 0.9154 (18) 0.2584 (9) 0.023 (4)*
H13A 0.545 (3) 0.985 (2) 0.3849 (11) 0.035 (5)*
H15A −0.026 (3) 1.1270 (19) 0.3265 (10) 0.030 (4)*
H16A −0.007 (4) 1.058 (2) 0.2033 (11) 0.040 (5)*
H17A 0.314 (3) 1.0534 (19) 0.4791 (10) 0.028 (4)*
H17B 0.078 (3) 1.0959 (18) 0.4546 (9) 0.024 (4)*
H18A 0.347 (3) 1.331 (2) 0.4477 (11) 0.035 (5)*
H19A 0.140 (4) 1.092 (2) 0.0910 (11) 0.044 (5)*
H19B 0.452 (4) 1.149 (2) 0.1147 (12) 0.047 (6)*
H19C 0.323 (4) 1.027 (2) 0.0392 (11) 0.040 (5)*
H20A 0.761 (4) 1.396 (2) 0.5032 (12) 0.047 (6)*
H20B 0.714 (4) 1.268 (2) 0.4370 (12) 0.041 (5)*
H20C 0.723 (4) 1.237 (2) 0.5162 (12) 0.043 (5)*
H21A 0.164 (4) 1.299 (2) 0.5562 (12) 0.048 (6)*
H21B 0.421 (4) 1.416 (2) 0.5753 (12) 0.042 (5)*
H21C 0.394 (4) 1.258 (2) 0.5923 (11) 0.036 (5)*
H1N3 −0.384 (4) 0.641 (2) 0.0196 (11) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02380 (15) 0.01846 (14) 0.01925 (15) −0.00197 (10) 0.00281 (11) −0.00094 (10)
F1 0.0338 (5) 0.0443 (5) 0.0371 (5) 0.0151 (4) −0.0013 (4) 0.0066 (4)
N2 0.0209 (5) 0.0188 (5) 0.0150 (4) −0.0010 (4) 0.0017 (3) 0.0006 (3)
N3 0.0234 (5) 0.0201 (5) 0.0210 (5) −0.0009 (4) −0.0016 (4) −0.0004 (4)
N4 0.0311 (6) 0.0190 (5) 0.0210 (5) −0.0011 (4) −0.0011 (4) 0.0012 (4)
C1 0.0241 (6) 0.0198 (5) 0.0216 (6) 0.0017 (4) 0.0074 (4) −0.0004 (4)
C2 0.0224 (6) 0.0273 (6) 0.0250 (6) 0.0024 (5) 0.0057 (5) −0.0021 (5)
C3 0.0287 (6) 0.0307 (7) 0.0225 (6) 0.0101 (5) 0.0038 (5) 0.0011 (5)
C4 0.0341 (7) 0.0237 (6) 0.0285 (7) 0.0065 (5) 0.0055 (5) 0.0056 (5)
C5 0.0279 (6) 0.0217 (6) 0.0265 (6) 0.0007 (5) 0.0039 (5) 0.0027 (5)
C6 0.0235 (6) 0.0202 (5) 0.0192 (5) 0.0023 (4) 0.0054 (4) 0.0002 (4)
C7 0.0236 (6) 0.0216 (6) 0.0217 (6) −0.0002 (4) 0.0041 (5) 0.0017 (4)
N1 0.0207 (5) 0.0236 (5) 0.0171 (5) 0.0009 (4) 0.0028 (4) 0.0015 (4)
C8 0.0211 (5) 0.0209 (5) 0.0143 (5) −0.0014 (4) 0.0039 (4) −0.0006 (4)
C9 0.0273 (6) 0.0192 (5) 0.0159 (5) −0.0012 (4) 0.0024 (4) 0.0020 (4)
C10 0.0281 (6) 0.0208 (6) 0.0174 (5) −0.0035 (5) 0.0018 (5) 0.0013 (4)
C11 0.0227 (5) 0.0161 (5) 0.0178 (5) −0.0029 (4) 0.0007 (4) 0.0018 (4)
C12 0.0233 (6) 0.0199 (5) 0.0211 (6) 0.0033 (4) 0.0020 (4) 0.0005 (4)
C13 0.0232 (6) 0.0198 (5) 0.0189 (5) 0.0049 (4) −0.0007 (4) 0.0024 (4)
C14 0.0198 (5) 0.0175 (5) 0.0182 (5) 0.0004 (4) 0.0015 (4) 0.0020 (4)
C15 0.0183 (5) 0.0237 (6) 0.0246 (6) 0.0038 (4) 0.0007 (4) 0.0036 (5)
C16 0.0209 (6) 0.0245 (6) 0.0215 (6) 0.0016 (4) −0.0035 (4) 0.0052 (5)
C17 0.0230 (6) 0.0245 (6) 0.0199 (6) 0.0039 (5) 0.0038 (4) 0.0029 (5)
C18 0.0235 (6) 0.0239 (6) 0.0198 (6) 0.0073 (4) 0.0004 (4) 0.0000 (4)
C19 0.0446 (9) 0.0252 (7) 0.0250 (7) −0.0006 (6) 0.0034 (6) 0.0071 (5)
C20 0.0236 (6) 0.0323 (7) 0.0277 (7) 0.0019 (5) 0.0037 (5) −0.0040 (6)
C21 0.0293 (7) 0.0391 (8) 0.0261 (7) 0.0126 (6) 0.0033 (5) −0.0062 (6)

Geometric parameters (Å, °)

S1—C8 1.6821 (13) C11—C12 1.3904 (18)
F1—C3 1.3577 (16) C11—C16 1.3976 (19)
N2—C9 1.3824 (16) C12—C13 1.3945 (18)
N2—N1 1.3870 (15) C12—H12A 0.989 (16)
N2—C8 1.3888 (15) C13—C14 1.3935 (17)
N3—C8 1.3389 (17) C13—H13A 0.941 (19)
N3—N4 1.3772 (15) C14—C15 1.3980 (17)
N3—H1N3 0.85 (2) C14—C17 1.5071 (17)
N4—C9 1.3011 (17) C15—C16 1.3923 (19)
C1—C2 1.382 (2) C15—H15A 0.958 (18)
C1—C6 1.4055 (18) C16—H16A 0.91 (2)
C1—H1A 0.977 (18) C17—C18 1.5392 (19)
C2—C3 1.387 (2) C17—H17A 0.968 (18)
C2—H2A 0.96 (2) C17—H17B 0.988 (17)
C3—C4 1.379 (2) C18—C20 1.524 (2)
C4—C5 1.385 (2) C18—C21 1.5272 (19)
C4—H4A 1.01 (2) C18—H18A 0.989 (19)
C5—C6 1.3908 (19) C19—H19A 1.07 (2)
C5—H5A 0.98 (2) C19—H19B 1.03 (2)
C6—C7 1.4618 (19) C19—H19C 1.01 (2)
C7—N1 1.2747 (17) C20—H20A 0.98 (2)
C7—H7A 0.97 (2) C20—H20B 0.96 (2)
C9—C10 1.5013 (17) C20—H20C 0.97 (2)
C10—C19 1.528 (2) C21—H21A 0.99 (2)
C10—C11 1.5299 (18) C21—H21B 0.97 (2)
C10—H10A 1.059 (19) C21—H21C 0.98 (2)
C9—N2—N1 118.18 (10) C11—C12—H12A 118.7 (10)
C9—N2—C8 108.16 (11) C13—C12—H12A 120.3 (10)
N1—N2—C8 133.59 (11) C14—C13—C12 121.45 (11)
C8—N3—N4 114.43 (11) C14—C13—H13A 117.7 (12)
C8—N3—H1N3 127.2 (13) C12—C13—H13A 120.9 (12)
N4—N3—H1N3 118.4 (13) C13—C14—C15 117.37 (11)
C9—N4—N3 103.92 (11) C13—C14—C17 122.28 (11)
C2—C1—C6 120.41 (13) C15—C14—C17 120.33 (11)
C2—C1—H1A 121.3 (11) C16—C15—C14 121.37 (12)
C6—C1—H1A 118.2 (11) C16—C15—H15A 120.0 (11)
C1—C2—C3 118.32 (13) C14—C15—H15A 118.7 (11)
C1—C2—H2A 124.2 (12) C15—C16—C11 120.84 (12)
C3—C2—H2A 117.5 (12) C15—C16—H16A 119.0 (13)
F1—C3—C4 118.41 (13) C11—C16—H16A 120.2 (13)
F1—C3—C2 118.51 (13) C14—C17—C18 114.35 (11)
C4—C3—C2 123.08 (13) C14—C17—H17A 109.5 (10)
C3—C4—C5 117.71 (13) C18—C17—H17A 107.9 (11)
C3—C4—H4A 119.6 (12) C14—C17—H17B 108.3 (10)
C5—C4—H4A 122.6 (12) C18—C17—H17B 109.7 (10)
C4—C5—C6 121.40 (13) H17A—C17—H17B 106.9 (14)
C4—C5—H5A 119.0 (11) C20—C18—C21 109.98 (11)
C6—C5—H5A 119.6 (11) C20—C18—C17 111.77 (11)
C5—C6—C1 119.08 (13) C21—C18—C17 110.13 (12)
C5—C6—C7 117.86 (12) C20—C18—H18A 107.0 (11)
C1—C6—C7 123.06 (12) C21—C18—H18A 108.4 (11)
N1—C7—C6 119.92 (12) C17—C18—H18A 109.4 (12)
N1—C7—H7A 121.5 (11) C10—C19—H19A 111.1 (11)
C6—C7—H7A 118.5 (11) C10—C19—H19B 109.4 (12)
C7—N1—N2 119.06 (11) H19A—C19—H19B 109.8 (16)
N3—C8—N2 102.50 (10) C10—C19—H19C 107.9 (11)
N3—C8—S1 126.62 (10) H19A—C19—H19C 109.8 (15)
N2—C8—S1 130.88 (10) H19B—C19—H19C 108.7 (17)
N4—C9—N2 110.96 (11) C18—C20—H20A 111.5 (12)
N4—C9—C10 126.38 (12) C18—C20—H20B 113.4 (12)
N2—C9—C10 122.59 (12) H20A—C20—H20B 108.1 (18)
C9—C10—C19 110.48 (11) C18—C20—H20C 109.1 (13)
C9—C10—C11 108.88 (10) H20A—C20—H20C 109.1 (17)
C19—C10—C11 113.34 (11) H20B—C20—H20C 105.5 (17)
C9—C10—H10A 110.3 (11) C18—C21—H21A 111.1 (13)
C19—C10—H10A 103.0 (11) C18—C21—H21B 110.1 (13)
C11—C10—H10A 110.7 (11) H21A—C21—H21B 106.5 (17)
C12—C11—C16 117.98 (12) C18—C21—H21C 110.7 (11)
C12—C11—C10 120.42 (12) H21A—C21—H21C 107.5 (17)
C16—C11—C10 121.60 (11) H21B—C21—H21C 110.9 (17)
C11—C12—C13 120.95 (12)
C8—N3—N4—C9 −0.39 (15) C8—N2—C9—N4 1.56 (14)
C6—C1—C2—C3 0.56 (19) N1—N2—C9—C10 −3.85 (17)
C1—C2—C3—F1 179.96 (12) C8—N2—C9—C10 178.80 (11)
C1—C2—C3—C4 −0.3 (2) N4—C9—C10—C19 −26.92 (19)
F1—C3—C4—C5 179.39 (12) N2—C9—C10—C19 156.28 (13)
C2—C3—C4—C5 −0.3 (2) N4—C9—C10—C11 98.16 (15)
C3—C4—C5—C6 0.8 (2) N2—C9—C10—C11 −78.64 (15)
C4—C5—C6—C1 −0.5 (2) C9—C10—C11—C12 107.13 (14)
C4—C5—C6—C7 −179.87 (13) C19—C10—C11—C12 −129.48 (14)
C2—C1—C6—C5 −0.16 (19) C9—C10—C11—C16 −72.11 (15)
C2—C1—C6—C7 179.16 (12) C19—C10—C11—C16 51.28 (17)
C5—C6—C7—N1 178.23 (12) C16—C11—C12—C13 −1.31 (18)
C1—C6—C7—N1 −1.1 (2) C10—C11—C12—C13 179.42 (11)
C6—C7—N1—N2 −176.62 (11) C11—C12—C13—C14 −0.41 (19)
C9—N2—N1—C7 167.93 (12) C12—C13—C14—C15 1.20 (18)
C8—N2—N1—C7 −15.5 (2) C12—C13—C14—C17 −177.44 (12)
N4—N3—C8—N2 1.29 (14) C13—C14—C15—C16 −0.28 (18)
N4—N3—C8—S1 −178.22 (9) C17—C14—C15—C16 178.39 (12)
C9—N2—C8—N3 −1.65 (13) C14—C15—C16—C11 −1.5 (2)
N1—N2—C8—N3 −178.43 (12) C12—C11—C16—C15 2.23 (18)
C9—N2—C8—S1 177.83 (10) C10—C11—C16—C15 −178.51 (11)
N1—N2—C8—S1 1.1 (2) C13—C14—C17—C18 92.42 (15)
N3—N4—C9—N2 −0.73 (14) C15—C14—C17—C18 −86.18 (14)
N3—N4—C9—C10 −177.84 (12) C14—C17—C18—C20 −66.53 (15)
N1—N2—C9—N4 178.91 (11) C14—C17—C18—C21 170.91 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···S1i 0.85 (2) 2.43 (2) 3.2763 (12) 172.3 (18)
C7—H7A···S1 0.96 (2) 2.50 (2) 3.2415 (13) 133.2 (16)
C4—H4A···Cg1ii 1.01 (2) 2.85 (2) 3.6276 (16) 133.8 (17)

Symmetry codes: (i) −x−1, −y+1, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2518).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Demirbas, N., Alpay-Karaoğlu, S., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem.39, 793–804. [DOI] [PubMed]
  5. Demirbas, N., Uğurluoğlu, R. & Demirbasx, A. (2002). Bioorg. Med. Chem.10, 3717–3723. [DOI] [PubMed]
  6. Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076–o1077. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o1149–o1150. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009b). Acta Cryst. E65, o1242–o1243. [DOI] [PMC free article] [PubMed]
  9. Göknur, A., Birsen, T. & Mevlüt, E. (2005). Arch. Pharm. Res.28, 438–442.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903030X/tk2518sup1.cif

e-65-o2079-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903030X/tk2518Isup2.hkl

e-65-o2079-Isup2.hkl (365KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES