Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 12;65(Pt 9):o2138. doi: 10.1107/S1600536809030554

N-(5-Methyl­sulfanyl-1,3,4-thia­diazol-2-yl)acetamide

Guo-Ying Zhang a,*
PMCID: PMC2969935  PMID: 21577548

Abstract

In the title compound, C5H7N3OS2, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, forming R 2 2(8) ring motifs. These dimers are arranged into chains via inter­molecular C—H⋯O hydrogen bonds between the methylsulfanyl groups and the O atoms of the carbonyl groups. The acetamido-1,3,4-thio­diazole unit is essentially planar [r.m.s. deviation 0.045 (8) Å].

Related literature

For the applications of 1,3,4-thio­diazole and its derivatives in anti­microbial drugs and in the construction of metal-organic frameworks, see: Gardinier et al. (2007); Mrozek et al. (2000); Xue et al. (2008). For the synthesis, see: Clerici & Pocar (2001).graphic file with name e-65-o2138-scheme1.jpg

Experimental

Crystal data

  • C5H7N3OS2

  • M r = 189.26

  • Triclinic, Inline graphic

  • a = 5.0797 (10) Å

  • b = 7.9894 (16) Å

  • c = 10.081 (2) Å

  • α = 91.96 (3)°

  • β = 90.94 (3)°

  • γ = 105.27 (3)°

  • V = 394.32 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.836, T max = 0.941

  • 3437 measured reflections

  • 1382 independent reflections

  • 1259 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.078

  • S = 1.07

  • 1382 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030554/bq2155sup1.cif

e-65-o2138-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030554/bq2155Isup2.hkl

e-65-o2138-Isup2.hkl (68.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.77 (2) 2.12 (2) 2.881 (2) 173 (2)
C1—H1B⋯O1ii 0.96 2.58 3.289 (3) 131 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful for financial support from the Program for Excellent Introduced Talents of Tianjin Normal University in China (No. 5RL052).

supplementary crystallographic information

Comment

1,3,4-Thiodiazole is important for biological systems, and its derivatives have attracted widespread interest due to their further expanded application in antimicrobial drugs and in the construction of some interesting metal-organic frameworks (Gardinier et al., 2007; Mrozek et al., 2000; Xue et al., 2008). Recently, we synthesized a new thiodiazole-ligand, namely 2-acetamido-5-methylmercapto-1,3,4-thiodiazole, (I). Herein we report the crystal structure of this ligand.

The molecular structure of (I) is shown in Fig. 1. The acetamido-1,3,4-thiodiazole moiety is essentially planar (r.m.s. deviation 0.045 (8) Å), forming a dihedral angle with the C1, S1 and C2 plane of atoms of 14.6 (9)°. In the crystal, inversion dimers linked by pairs of N—H···N hydrogen bonds occur, forming R22(8) ring motifs. These dimers are arranged into chains via intermolecular C—H···O hydrogen bonds between the methyl groups and the O atoms of the carbonyl groups (Fig. 2).

Experimental

The title compound was prepared according to the literature (Clerici et al., 2001). 5-Methylsulfanyl-1,3,4-thiadiazol-2-ylamine (3.239 g, 0.022 mol) was suspended in acetic anhydride (2.28 ml, 0.024 mol), and acetic acid (9 ml) was added under stirring. The reaction mixture was further stirred at 313 K for 20 min. After cooling, water (10 ml) was added to the mixture, and then the precipitate was recrystallized in EtOH, which gave single crystals suitable for X-ray diffraction analysis (yield: 3.331 g, 80%).

Refinement

All H atoms bound to C atoms were geometrically positioned and refined using a riding model, with C—H = 0.96 Å and Uiso(H) = Ueq(C). H atom on amino N was located from difference Fourier map and its position was refined freely, with Uiso(H) = Ueq(N). The refined N—H distance is 0.77 (2) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The chain structure linked by N—H···N (pink) and C—H···O (blue) hydrogen bonds in (I).

Crystal data

C5H7N3OS2 Z = 2
Mr = 189.26 F(000) = 196
Triclinic, P1 Dx = 1.594 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.0797 (10) Å Cell parameters from 3437 reflections
b = 7.9894 (16) Å θ = 3.3–27.6°
c = 10.081 (2) Å µ = 0.62 mm1
α = 91.96 (3)° T = 293 K
β = 90.94 (3)° Block, yellow
γ = 105.27 (3)° 0.30 × 0.30 × 0.10 mm
V = 394.32 (14) Å3

Data collection

Rigaku R-AXIS RAPID-S diffractometer 1382 independent reflections
Radiation source: fine-focus sealed tube 1259 reflections with I > 2σ(I)
graphite Rint = 0.016
ω scans θmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −6→6
Tmin = 0.836, Tmax = 0.941 k = −9→9
3437 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.1675P] where P = (Fo2 + 2Fc2)/3
1382 reflections (Δ/σ)max = 0.001
106 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8654 (4) 0.6728 (3) 0.3920 (2) 0.0434 (5)
H1A 0.8055 0.5632 0.4333 0.065*
H1B 0.9004 0.6534 0.3002 0.065*
H1C 0.7261 0.7336 0.3984 0.065*
C2 1.0570 (4) 0.8285 (2) 0.63353 (18) 0.0267 (4)
C3 0.8380 (4) 0.8321 (2) 0.83774 (18) 0.0260 (4)
C4 0.4332 (4) 0.6973 (2) 0.95823 (19) 0.0282 (4)
C5 0.2992 (4) 0.7042 (3) 1.0889 (2) 0.0358 (5)
H5A 0.1062 0.6539 1.0780 0.054*
H5B 0.3327 0.8229 1.1205 0.054*
H5C 0.3730 0.6404 1.1521 0.054*
H3 0.732 (5) 0.878 (3) 1.008 (2) 0.039 (7)*
N1 1.2055 (3) 0.9415 (2) 0.71786 (16) 0.0324 (4)
N2 1.0764 (3) 0.9425 (2) 0.83800 (16) 0.0312 (4)
N3 0.6785 (3) 0.8170 (2) 0.94718 (17) 0.0300 (4)
O1 0.3383 (3) 0.59336 (19) 0.86769 (14) 0.0406 (4)
S1 1.17277 (10) 0.80015 (7) 0.47435 (5) 0.03824 (18)
S2 0.74395 (9) 0.71212 (6) 0.69103 (5) 0.02978 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0426 (13) 0.0547 (14) 0.0290 (11) 0.0073 (11) −0.0009 (9) −0.0095 (10)
C2 0.0247 (9) 0.0298 (10) 0.0247 (9) 0.0057 (7) 0.0016 (7) 0.0004 (7)
C3 0.0256 (10) 0.0268 (9) 0.0237 (10) 0.0041 (8) 0.0004 (7) −0.0039 (7)
C4 0.0253 (10) 0.0280 (10) 0.0298 (10) 0.0046 (8) 0.0011 (8) −0.0005 (8)
C5 0.0328 (11) 0.0379 (11) 0.0336 (11) 0.0036 (9) 0.0085 (9) 0.0009 (9)
N1 0.0286 (9) 0.0358 (9) 0.0290 (9) 0.0021 (7) 0.0051 (7) −0.0041 (7)
N2 0.0264 (9) 0.0336 (9) 0.0279 (9) −0.0012 (7) 0.0038 (7) −0.0062 (7)
N3 0.0266 (9) 0.0327 (9) 0.0246 (9) −0.0017 (7) 0.0023 (7) −0.0087 (7)
O1 0.0339 (8) 0.0409 (8) 0.0369 (8) −0.0064 (6) 0.0029 (6) −0.0117 (7)
S1 0.0323 (3) 0.0532 (4) 0.0271 (3) 0.0080 (2) 0.0066 (2) −0.0043 (2)
S2 0.0256 (3) 0.0336 (3) 0.0247 (3) −0.0007 (2) 0.00124 (19) −0.00701 (19)

Geometric parameters (Å, °)

C1—S1 1.796 (2) C3—S2 1.7244 (19)
C1—H1A 0.9600 C4—O1 1.216 (2)
C1—H1B 0.9600 C4—N3 1.365 (3)
C1—H1C 0.9600 C4—C5 1.499 (3)
C2—N1 1.294 (3) C5—H5A 0.9600
C2—S2 1.737 (2) C5—H5B 0.9600
C2—S1 1.7457 (19) C5—H5C 0.9600
C3—N2 1.297 (2) N1—N2 1.387 (2)
C3—N3 1.369 (3) N3—H3 0.77 (2)
S1—C1—H1A 109.5 N3—C4—C5 114.83 (17)
S1—C1—H1B 109.5 C4—C5—H5A 109.5
H1A—C1—H1B 109.5 C4—C5—H5B 109.5
S1—C1—H1C 109.5 H5A—C5—H5B 109.5
H1A—C1—H1C 109.5 C4—C5—H5C 109.5
H1B—C1—H1C 109.5 H5A—C5—H5C 109.5
N1—C2—S2 115.25 (14) H5B—C5—H5C 109.5
N1—C2—S1 120.67 (15) C2—N1—N2 111.35 (16)
S2—C2—S1 124.08 (11) C3—N2—N1 112.70 (15)
N2—C3—N3 120.95 (17) C4—N3—C3 124.71 (17)
N2—C3—S2 114.78 (14) C4—N3—H3 117.4 (18)
N3—C3—S2 124.27 (14) C3—N3—H3 117.8 (18)
O1—C4—N3 121.00 (18) C2—S1—C1 101.30 (10)
O1—C4—C5 124.16 (18) C3—S2—C2 85.91 (9)
S2—C2—N1—N2 0.3 (2) S2—C3—N3—C4 4.8 (3)
S1—C2—N1—N2 −179.74 (13) N1—C2—S1—C1 −166.91 (17)
N3—C3—N2—N1 −178.87 (17) S2—C2—S1—C1 13.04 (15)
S2—C3—N2—N1 0.6 (2) N2—C3—S2—C2 −0.35 (15)
C2—N1—N2—C3 −0.6 (2) N3—C3—S2—C2 179.09 (17)
O1—C4—N3—C3 −0.2 (3) N1—C2—S2—C3 0.01 (16)
C5—C4—N3—C3 178.85 (18) S1—C2—S2—C3 −179.95 (13)
N2—C3—N3—C4 −175.77 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···N2i 0.77 (2) 2.12 (2) 2.881 (2) 173 (2)
C1—H1B···O1ii 0.96 2.58 3.289 (3) 131 (2)

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2155).

References

  1. Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Clerici, F. & Pocar, D. (2001). J. Med. Chem.44, 931–936. [DOI] [PubMed]
  3. Gardinier, J. R., Silva, R. M., Gwengo, C. & Lindeman, S. V. (2007). Chem. Commun. pp. 1524–1526. [DOI] [PubMed]
  4. Mrozek, A., Karolak-Wojciechowska, J., Amiel, P. & Barbe, J. (2000). J. Mol. Struct.524, 159–167.
  5. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Xue, D.-X., Zhang, W.-X., Chen, X.-M. & Wang, H.-Z. (2008). Chem. Commun. pp. 1551–1553. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030554/bq2155sup1.cif

e-65-o2138-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030554/bq2155Isup2.hkl

e-65-o2138-Isup2.hkl (68.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES