Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 19;65(Pt 9):m1096–m1097. doi: 10.1107/S1600536809032097

(1,10-Phenanthroline-κ2 N,N′)(triphenyl­phosphine-κP)silver(I) trifluoro­methane­sulfonate

Jie-Qiang Wu a, Qiong-Hua Jin a,*, Ke-Yi Hu a, Cun-Lin Zhang b
PMCID: PMC2969938  PMID: 21577447

Abstract

The structure of the title complex, [Ag(C12H8N2)(C18H15P)]CF3SO3, is based on a distorted trigonal–planar N2P coordination of the AgI ion, provided by two N atoms of the bidentate phenanthroline ligand and one P atom of the triphenyl­phosphine ligand. The phenanthroline ligand and one phenyl ring of the triphenyl­phosphine ligand almost lie in one plane (maximum deviation = 0.014 Å from the best planes). The crystal structure may be stabilized by an inter­molecular C—H⋯O hydrogen bond between the phenanthroline ligand and the O atom of the trifluoro­methane­sulfonate anion.

Related literature

For related structures, see: Di Nicola et al. (2007); Jin et al. (1999, 2009); Effendy et al. (2007a ,b ); Awaleh et al. (2005a ,b ); Pettinari et al. (2007). For general background, see: Howells & Mccown (1977); Bowmaker et al. (2005); Lawrance (1986).graphic file with name e-65-m1096-scheme1.jpg

Experimental

Crystal data

  • [Ag(C12H8N2)(C18H15P)]CF3SO3

  • M r = 699.42

  • Triclinic, Inline graphic

  • a = 10.9832 (2) Å

  • b = 11.7533 (2) Å

  • c = 12.2642 (3) Å

  • α = 77.711 (1)°

  • β = 76.183 (1)°

  • γ = 73.440 (1)°

  • V = 1455.66 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.735, T max = 0.832

  • 18629 measured reflections

  • 9515 independent reflections

  • 6777 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.133

  • S = 1.00

  • 9515 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032097/wm2241sup1.cif

e-65-m1096-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032097/wm2241Isup2.hkl

e-65-m1096-Isup2.hkl (465.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ag1—N2 2.2798 (18)
Ag1—N1 2.292 (2)
Ag1—P1 2.3469 (5)
N2—Ag1—N1 73.53 (8)
N2—Ag1—P1 147.77 (6)
N1—Ag1—P1 138.03 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H16⋯O2 0.93 2.36 3.285 (6) 173

Acknowledgments

This work was supported by the National Science Foundation of China (grant No. 20871085), the Committee of Education of Beijing Foundation of China (grant No. KM200610028006), the Project sponsored by SRF for ROCS and SEM, the subsidy of Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program under grant Nos. 2007CB310408, No. 2006CB302901), the State Key Laboratory of Functional Materials for Informatics and the Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences.

supplementary crystallographic information

Comment

A recent report (Di Nicola et al., 2007) describes complexes between silver nitrate, a tertiary phosphine ligand and oligodentate bases, L that are derivatives of 2,2'-bipyridyl, which resulted in adducts with general formula AgNO3:PR3:L(1:1:1). The silver coordination environment in these complexes is dominated by the quasi-planar N2AgP or O2AgP coordination. We have likewise studied mixed-ligand Ag(I) complexes of N-heterocyclic and PPh3 ligands, viz [AgBr(phen)(PPh3)] and [AgX(2-Apy)(PPh3)]2 (X = Br, Cl, NO3; 2-Apy= 2-aminopyridine) (Jin et al., 1999, Jin et al., 2009) and have synthesized the title complex [Ag(phen)(PPh3)](OTf). Furthermore, we have studied the role of several weakly coordinating anions (nitrate, nitrite, acetate, perchlorate trifluoroacetate and trifluoromethanesulfonate) in silver complexes.

The molecular structure of the title complex is depicted in Fig.1. The coordination polyhedron of the silver atom adopts a distorted trigonal-planar geometry, formed by two nitrogen atoms of phen with Ag—N distances of 2.3469 (5) Å and 2.2797 (19) Å, and by one phosphorus atom of the PPh3 ligand with a Ag—P distance of 2.292 (2) Å. The trifluoromethanesulfonate anion is present as a counter anion and, as expected, shows no direct coordination to the metal center, in contrast to the complex [AgBr(phen)(PPh3)] where the silver atom is coordinated to two nitrogen atoms of phen (Ag—N 2.376 (8) Å), one phosphorus atom of PPh3 (Ag—P, 2.375 (3) Å) and in addition to one bromide anion (Jin et al., 1999), adopting a distorted tetrahedron as coordination polyhedron.

The molecular structure of the title complex shows little differences in comparison with the structures of compounds AgX:PPh3:L, where X = nitrate (Di Nicola et al., 2007), nitrite (Pettinari et al., 2007), acetate (Effendy et al., 2007a), perchlorate (Effendy et al., 2007b) and trifluoroacetate (Awaleh et al., 2005a). Considering the large steric hindrance and the weak coordination ability (Awaleh et al., 2005b; Howells et al., 1977; Lawrance et al.,1986) of the trifluoromethanesulfonate anion, there is only one C—H···O hydrogen-bond between the phenanthroline ligand and the O atom of the anion with the distance O···H of 2.609Å and the angle C—H···O of 173°.

In the title complex, the P—Ag—N1, P—Ag—N2 and N1—Ag—N2 angles are 147.77 (6)°, 138.03 (6)° and 73.54 (8) ° with a sum of 359.54 °, which comfirms the trigonal-planar environment around the silver atom. In the silver nitrate complex, the P—Ag—N (132.66 (9)°, 131.76 (8)°) (Di Nicola et al., 2007) angles are similar. However, contributing to the role of the nitrate anion, the coordination environment of silver changes from distorted trigonal planar to tetrahedral. The P—Ag—N angles in the other complexes are: 136.94 (5)°, 139.60 (5)°, 71.40 (6)° in the perchlorate (Effendy et al., 2007b), 129.4 (1)°, 135.7 (1)°, 71.7 (2)° in trifluoroacetate (Awaleh et al., 2005a), 116.52 (6)°, 126.12 (7)°, 70.5 (1)° in acetate (Effendy et al., 2007a) and 126.72 (8)°, 127.18 (9)°, 70.77 (12)° in the nitrite (Pettinari et al.,2007) anion.

Hence, we should consider two types of anions in the complexes AgX:PR3:L, viz tetrahedral or distorted trigonal-planar anions and planar or quasi-planar anions (Awaleh et al., 2005a; Awaleh et al., 2005b; Bowmaker et al., 2005). Nitrate, nitrite and acetate belong to the former type, whereas perchlorate, trifluoroacetate and trifluoromethanesulfonate can play a role in both of them because of large steric hindrance and the weak coordination ability.

Experimental

A mixture of AgOTf, Ph3P and phen in the molar ratio of 1:1:1 in MeOH was stirred for 1 h at ambient temperature, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of colorless crystals of the title complex. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared. Analysis found (percentage): C 53.22, H 3.29, N 4.01; calculated: C 53.19, H 3.29, N 4.02.

Refinement

All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded (Ueq(H) = 1.2Ueq(C)).

Figures

Fig. 1.

Fig. 1.

Perspective view of the molecule of the title complex; hydrogen atoms are omitted for clarity. Atoms are displayed as ellipsoids at the 35% probability level.

Crystal data

[Ag(C12H8N2)(C18H15P)]CF3SO3 Z = 2
Mr = 699.42 F(000) = 704
Triclinic, P1 Dx = 1.596 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.9832 (2) Å Cell parameters from 5045 reflections
b = 11.7533 (2) Å θ = 2.3–32.9°
c = 12.2642 (3) Å µ = 0.87 mm1
α = 77.711 (1)° T = 293 K
β = 76.183 (1)° Block, colourless
γ = 73.440 (1)° 0.4 × 0.3 × 0.2 mm
V = 1455.66 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 9515 independent reflections
Radiation source: fine-focus sealed tube 6777 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −15→15
Tmin = 0.735, Tmax = 0.832 k = −17→16
18629 measured reflections l = −18→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2 + 0.38P] where P = (Fo2 + 2Fc2)/3
9515 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.09032 (2) 0.931304 (15) 0.211327 (16) 0.05664 (9)
P1 0.18488 (6) 0.77307 (5) 0.10540 (5) 0.04241 (13)
C24 −0.0779 (3) 1.12309 (19) 0.36019 (18) 0.0491 (6)
C25 −0.3066 (4) 1.2209 (4) 0.3869 (4) 0.0981 (15)
H21 −0.3787 1.2746 0.4205 0.118*
S1 0.61400 (9) 0.77152 (8) 0.31032 (8) 0.0748 (2)
C1 0.0853 (2) 0.75012 (19) 0.01682 (19) 0.0455 (5)
C3 0.1327 (3) 0.6742 (3) −0.0638 (3) 0.0631 (7)
H6 0.2207 0.6372 −0.0786 0.076*
C2 −0.0452 (3) 0.8068 (3) 0.0342 (3) 0.0644 (7)
H10 −0.0782 0.8614 0.0852 0.077*
C4 0.3400 (2) 0.77960 (19) 0.01460 (18) 0.0433 (4)
C6 0.4324 (3) 0.6788 (2) −0.0199 (2) 0.0566 (6)
H5 0.4166 0.6031 0.0064 0.068*
C7 0.4818 (3) 0.9018 (3) −0.0982 (3) 0.0707 (8)
H2 0.4979 0.9772 −0.1261 0.085*
C5 0.3678 (3) 0.8918 (2) −0.0246 (2) 0.0562 (6)
H1 0.3088 0.9603 −0.0008 0.067*
C10 0.1297 (3) 0.5596 (3) 0.2319 (2) 0.0602 (7)
H15 0.0575 0.5801 0.1981 0.072*
C8 0.2170 (2) 0.63074 (19) 0.20106 (18) 0.0438 (5)
C11 0.1495 (4) 0.4583 (3) 0.3128 (3) 0.0778 (10)
H14 0.0894 0.4118 0.3342 0.093*
C9 0.3237 (3) 0.5981 (2) 0.2526 (2) 0.0544 (6)
H11 0.3828 0.6456 0.2335 0.065*
C12 0.5478 (3) 0.6894 (3) −0.0929 (3) 0.0652 (7)
H4 0.6082 0.6213 −0.1158 0.078*
C13 0.5725 (3) 0.8001 (3) −0.1309 (3) 0.0677 (8)
H3 0.6504 0.8071 −0.1789 0.081*
C14 −0.1276 (3) 0.7833 (3) −0.0234 (3) 0.0766 (9)
H9 −0.2156 0.8201 −0.0094 0.092*
C16 0.0513 (3) 0.6529 (3) −0.1223 (3) 0.0715 (8)
H7 0.0846 0.6022 −0.1768 0.086*
C15 −0.0786 (3) 0.7058 (3) −0.1007 (3) 0.0714 (8)
H8 −0.1336 0.6889 −0.1388 0.086*
C18 0.3430 (4) 0.4952 (3) 0.3324 (3) 0.0685 (8)
H12 0.4153 0.4733 0.3662 0.082*
C17 0.2555 (4) 0.4256 (3) 0.3616 (3) 0.0763 (9)
H13 0.2688 0.3561 0.4148 0.092*
O1 0.5839 (4) 0.7776 (4) 0.4276 (3) 0.1266 (12)
O2 0.5105 (4) 0.7955 (3) 0.2518 (4) 0.1519 (17)
O3 0.7108 (4) 0.8336 (4) 0.2534 (4) 0.1455 (16)
C19 0.6933 (5) 0.6175 (4) 0.2985 (6) 0.1103 (17)
F1 0.7991 (3) 0.5804 (4) 0.3393 (4) 0.1752 (17)
F2 0.7172 (6) 0.5954 (4) 0.1989 (4) 0.218 (3)
C23 0.0474 (3) 1.1023 (2) 0.38492 (18) 0.0513 (6)
C21 0.0633 (4) 1.1640 (3) 0.4660 (2) 0.0763 (11)
C22 −0.0480 (7) 1.2472 (3) 0.5189 (3) 0.1041 (18)
H19 −0.0385 1.2879 0.5723 0.125*
C20 0.2638 (4) 1.0021 (3) 0.3561 (3) 0.0752 (9)
H16 0.3327 0.9473 0.3203 0.090*
N1 0.1478 (2) 1.02361 (18) 0.33127 (18) 0.0522 (5)
N2 −0.09368 (19) 1.06137 (17) 0.28528 (15) 0.0489 (5)
C26 −0.1838 (4) 1.2062 (2) 0.4146 (2) 0.0757 (10)
C27 −0.2110 (3) 1.0794 (3) 0.2637 (3) 0.0708 (8)
H23 −0.2217 1.0367 0.2123 0.085*
C28 −0.1636 (6) 1.2669 (3) 0.4930 (3) 0.1029 (17)
H20 −0.2329 1.3223 0.5277 0.124*
C29 −0.3190 (4) 1.1595 (4) 0.3146 (4) 0.0990 (14)
H22 −0.3996 1.1693 0.2972 0.119*
C31 0.2848 (6) 1.0623 (5) 0.4377 (4) 0.1018 (17)
H17 0.3670 1.0475 0.4536 0.122*
C30 0.1856 (6) 1.1398 (5) 0.4908 (3) 0.1008 (17)
H18 0.1988 1.1777 0.5448 0.121*
F3 0.6223 (5) 0.5475 (3) 0.3633 (5) 0.213 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.06687 (15) 0.04557 (11) 0.05563 (12) −0.00722 (8) −0.00064 (9) −0.02543 (8)
P1 0.0462 (3) 0.0368 (2) 0.0428 (3) −0.0074 (2) −0.0011 (2) −0.0152 (2)
C24 0.0684 (16) 0.0344 (9) 0.0358 (9) −0.0065 (9) 0.0011 (9) −0.0071 (7)
C25 0.072 (2) 0.074 (2) 0.094 (3) 0.0230 (17) 0.021 (2) 0.0052 (19)
S1 0.0677 (5) 0.0771 (5) 0.0829 (5) −0.0120 (4) −0.0169 (4) −0.0249 (4)
C1 0.0490 (13) 0.0417 (10) 0.0443 (11) −0.0082 (8) −0.0041 (9) −0.0133 (8)
C3 0.0536 (15) 0.0689 (16) 0.0681 (16) −0.0009 (12) −0.0068 (12) −0.0380 (13)
C2 0.0545 (16) 0.0662 (16) 0.0732 (18) −0.0011 (12) −0.0090 (13) −0.0345 (13)
C4 0.0472 (12) 0.0395 (9) 0.0426 (10) −0.0110 (8) −0.0056 (9) −0.0077 (8)
C6 0.0523 (15) 0.0434 (11) 0.0633 (15) −0.0094 (10) 0.0063 (11) −0.0083 (10)
C7 0.075 (2) 0.0628 (16) 0.077 (2) −0.0352 (15) −0.0136 (16) 0.0069 (14)
C5 0.0613 (16) 0.0413 (11) 0.0690 (16) −0.0161 (10) −0.0162 (13) −0.0062 (10)
C10 0.0700 (18) 0.0622 (15) 0.0540 (14) −0.0303 (13) −0.0077 (12) −0.0061 (11)
C8 0.0538 (13) 0.0407 (9) 0.0377 (9) −0.0145 (9) −0.0004 (9) −0.0133 (8)
C11 0.107 (3) 0.0724 (19) 0.0640 (18) −0.0527 (19) −0.0103 (18) 0.0020 (15)
C9 0.0615 (16) 0.0525 (12) 0.0524 (13) −0.0168 (11) −0.0113 (11) −0.0106 (10)
C12 0.0510 (15) 0.0647 (16) 0.0652 (16) −0.0060 (12) 0.0046 (12) −0.0074 (13)
C13 0.0497 (16) 0.082 (2) 0.0651 (17) −0.0229 (14) −0.0056 (13) 0.0055 (14)
C14 0.0515 (17) 0.086 (2) 0.098 (2) 0.0036 (14) −0.0254 (16) −0.0410 (18)
C16 0.071 (2) 0.0799 (19) 0.0713 (18) −0.0068 (15) −0.0163 (15) −0.0411 (15)
C15 0.071 (2) 0.0742 (18) 0.077 (2) −0.0096 (15) −0.0304 (16) −0.0228 (15)
C18 0.093 (2) 0.0581 (15) 0.0577 (15) −0.0160 (15) −0.0278 (15) −0.0039 (12)
C17 0.118 (3) 0.0585 (16) 0.0554 (16) −0.0331 (17) −0.0203 (17) 0.0037 (12)
O1 0.105 (2) 0.169 (4) 0.097 (2) −0.019 (2) 0.0043 (18) −0.050 (2)
O2 0.161 (3) 0.090 (2) 0.238 (5) 0.013 (2) −0.143 (4) −0.038 (2)
O3 0.148 (3) 0.117 (3) 0.172 (4) −0.072 (3) 0.034 (3) −0.043 (2)
C19 0.094 (3) 0.070 (2) 0.161 (5) −0.011 (2) −0.041 (3) 0.002 (3)
F1 0.092 (2) 0.166 (3) 0.236 (4) 0.038 (2) −0.057 (2) −0.031 (3)
F2 0.336 (7) 0.123 (3) 0.175 (4) 0.056 (3) −0.082 (4) −0.096 (3)
C23 0.0848 (19) 0.0382 (10) 0.0355 (10) −0.0281 (11) −0.0072 (10) −0.0027 (8)
C21 0.146 (3) 0.0638 (16) 0.0408 (12) −0.068 (2) −0.0155 (16) 0.0002 (11)
C22 0.216 (6) 0.0626 (19) 0.0432 (15) −0.068 (3) 0.011 (2) −0.0225 (13)
C20 0.071 (2) 0.080 (2) 0.080 (2) −0.0389 (17) −0.0279 (17) 0.0172 (16)
N1 0.0608 (13) 0.0474 (10) 0.0525 (11) −0.0202 (9) −0.0160 (9) −0.0014 (8)
N2 0.0510 (12) 0.0468 (10) 0.0441 (10) −0.0026 (8) −0.0093 (8) −0.0096 (8)
C26 0.104 (3) 0.0428 (12) 0.0515 (14) 0.0004 (13) 0.0185 (15) −0.0092 (10)
C27 0.0586 (18) 0.0790 (19) 0.0655 (17) −0.0017 (14) −0.0208 (14) −0.0024 (14)
C28 0.173 (5) 0.0529 (16) 0.061 (2) −0.023 (2) 0.029 (3) −0.0266 (14)
C29 0.060 (2) 0.108 (3) 0.093 (3) 0.011 (2) −0.0072 (19) 0.009 (2)
C31 0.120 (4) 0.131 (4) 0.089 (3) −0.094 (3) −0.059 (3) 0.040 (3)
C30 0.171 (5) 0.109 (3) 0.061 (2) −0.103 (4) −0.035 (3) 0.011 (2)
F3 0.209 (5) 0.103 (2) 0.335 (7) −0.079 (3) −0.087 (4) 0.042 (3)

Geometric parameters (Å, °)

Ag1—N2 2.2798 (18) C11—H14 0.9300
Ag1—N1 2.292 (2) C9—C18 1.384 (4)
Ag1—P1 2.3469 (5) C9—H11 0.9300
P1—C4 1.812 (2) C12—C13 1.365 (4)
P1—C1 1.819 (3) C12—H4 0.9300
P1—C8 1.823 (2) C13—H3 0.9300
C24—N2 1.353 (3) C14—C15 1.364 (5)
C24—C26 1.418 (3) C14—H9 0.9300
C24—C23 1.422 (4) C16—C15 1.370 (5)
C25—C29 1.308 (7) C16—H7 0.9300
C25—C26 1.423 (7) C15—H8 0.9300
C25—H21 0.9300 C18—C17 1.371 (5)
S1—O1 1.409 (3) C18—H12 0.9300
S1—O2 1.417 (3) C17—H13 0.9300
S1—O3 1.421 (4) C19—F2 1.253 (7)
S1—C19 1.791 (5) C19—F1 1.298 (6)
C1—C3 1.381 (3) C19—F3 1.307 (6)
C1—C2 1.384 (4) C23—N1 1.355 (3)
C3—C16 1.375 (4) C23—C21 1.416 (3)
C3—H6 0.9300 C21—C30 1.385 (7)
C2—C14 1.387 (5) C21—C22 1.442 (7)
C2—H10 0.9300 C22—C28 1.326 (7)
C4—C6 1.391 (3) C22—H19 0.9300
C4—C5 1.397 (3) C20—N1 1.323 (4)
C6—C12 1.387 (4) C20—C31 1.435 (6)
C6—H5 0.9300 C20—H16 0.9300
C7—C5 1.376 (4) N2—C27 1.327 (4)
C7—C13 1.385 (5) C26—C28 1.403 (6)
C7—H2 0.9300 C27—C29 1.394 (5)
C5—H1 0.9300 C27—H23 0.9300
C10—C11 1.380 (4) C28—H20 0.9300
C10—C8 1.382 (4) C29—H22 0.9300
C10—H15 0.9300 C31—C30 1.337 (7)
C8—C9 1.384 (4) C31—H17 0.9300
C11—C17 1.356 (5) C30—H18 0.9300
N2—Ag1—N1 73.53 (8) C7—C13—H3 119.9
N2—Ag1—P1 147.77 (6) C15—C14—C2 119.6 (3)
N1—Ag1—P1 138.03 (6) C15—C14—H9 120.2
C4—P1—C1 106.47 (11) C2—C14—H9 120.2
C4—P1—C8 104.71 (10) C15—C16—C3 120.4 (3)
C1—P1—C8 103.84 (10) C15—C16—H7 119.8
C4—P1—Ag1 115.16 (7) C3—C16—H7 119.8
C1—P1—Ag1 115.70 (7) C14—C15—C16 120.1 (3)
C8—P1—Ag1 109.82 (7) C14—C15—H8 119.9
N2—C24—C26 121.2 (3) C16—C15—H8 119.9
N2—C24—C23 118.8 (2) C17—C18—C9 120.1 (3)
C26—C24—C23 120.0 (3) C17—C18—H12 120.0
C29—C25—C26 120.5 (3) C9—C18—H12 120.0
C29—C25—H21 119.7 C11—C17—C18 119.9 (3)
C26—C25—H21 119.7 C11—C17—H13 120.0
O1—S1—O2 118.2 (3) C18—C17—H13 120.0
O1—S1—O3 111.0 (3) F2—C19—F1 109.1 (6)
O2—S1—O3 113.3 (3) F2—C19—F3 108.5 (6)
O1—S1—C19 105.7 (3) F1—C19—F3 102.2 (5)
O2—S1—C19 103.3 (2) F2—C19—S1 113.4 (4)
O3—S1—C19 103.5 (3) F1—C19—S1 112.9 (4)
C3—C1—C2 118.2 (3) F3—C19—S1 110.1 (4)
C3—C1—P1 123.0 (2) N1—C23—C21 121.9 (3)
C2—C1—P1 118.73 (18) N1—C23—C24 119.3 (2)
C16—C3—C1 120.6 (3) C21—C23—C24 118.8 (3)
C16—C3—H6 119.7 C30—C21—C23 117.7 (4)
C1—C3—H6 119.7 C30—C21—C22 123.6 (4)
C1—C2—C14 121.0 (3) C23—C21—C22 118.7 (4)
C1—C2—H10 119.5 C28—C22—C21 121.5 (3)
C14—C2—H10 119.5 C28—C22—H19 119.2
C6—C4—C5 118.1 (2) C21—C22—H19 119.2
C6—C4—P1 123.43 (18) N1—C20—C31 120.8 (4)
C5—C4—P1 118.47 (19) N1—C20—H16 119.6
C12—C6—C4 121.0 (2) C31—C20—H16 119.6
C12—C6—H5 119.5 C20—N1—C23 119.3 (3)
C4—C6—H5 119.5 C20—N1—Ag1 126.7 (2)
C5—C7—C13 120.2 (3) C23—N1—Ag1 113.81 (17)
C5—C7—H2 119.9 C27—N2—C24 118.7 (2)
C13—C7—H2 119.9 C27—N2—Ag1 126.7 (2)
C7—C5—C4 120.5 (3) C24—N2—Ag1 114.57 (16)
C7—C5—H1 119.7 C28—C26—C24 119.4 (4)
C4—C5—H1 119.7 C28—C26—C25 123.8 (4)
C11—C10—C8 120.1 (3) C24—C26—C25 116.9 (3)
C11—C10—H15 120.0 N2—C27—C29 122.8 (4)
C8—C10—H15 120.0 N2—C27—H23 118.6
C10—C8—C9 118.8 (2) C29—C27—H23 118.6
C10—C8—P1 121.0 (2) C22—C28—C26 121.6 (4)
C9—C8—P1 119.95 (18) C22—C28—H20 119.2
C17—C11—C10 120.8 (3) C26—C28—H20 119.2
C17—C11—H14 119.6 C25—C29—C27 119.9 (4)
C10—C11—H14 119.6 C25—C29—H22 120.1
C8—C9—C18 120.3 (3) C27—C29—H22 120.1
C8—C9—H11 119.9 C30—C31—C20 119.8 (4)
C18—C9—H11 119.9 C30—C31—H17 120.1
C13—C12—C6 119.9 (3) C20—C31—H17 120.1
C13—C12—H4 120.1 C31—C30—C21 120.4 (4)
C6—C12—H4 120.1 C31—C30—H18 119.8
C12—C13—C7 120.2 (3) C21—C30—H18 119.8
C12—C13—H3 119.9
N2—Ag1—P1—C4 143.08 (12) O1—S1—C19—F1 −60.6 (5)
N1—Ag1—P1—C4 −51.26 (12) O2—S1—C19—F1 174.5 (5)
N2—Ag1—P1—C1 18.06 (13) O3—S1—C19—F1 56.2 (5)
N1—Ag1—P1—C1 −176.27 (11) O1—S1—C19—F3 52.9 (5)
N2—Ag1—P1—C8 −99.05 (13) O2—S1—C19—F3 −71.9 (5)
N1—Ag1—P1—C8 66.61 (12) O3—S1—C19—F3 169.7 (5)
C4—P1—C1—C3 40.1 (3) N2—C24—C23—N1 1.4 (3)
C8—P1—C1—C3 −70.1 (3) C26—C24—C23—N1 −179.3 (2)
Ag1—P1—C1—C3 169.5 (2) N2—C24—C23—C21 −178.0 (2)
C4—P1—C1—C2 −142.9 (2) C26—C24—C23—C21 1.3 (3)
C8—P1—C1—C2 106.9 (2) N1—C23—C21—C30 −1.1 (4)
Ag1—P1—C1—C2 −13.6 (2) C24—C23—C21—C30 178.3 (2)
C2—C1—C3—C16 −2.1 (5) N1—C23—C21—C22 179.5 (2)
P1—C1—C3—C16 174.9 (3) C24—C23—C21—C22 −1.1 (3)
C3—C1—C2—C14 3.3 (5) C30—C21—C22—C28 −179.5 (3)
P1—C1—C2—C14 −173.8 (3) C23—C21—C22—C28 −0.1 (5)
C1—P1—C4—C6 −75.7 (2) C31—C20—N1—C23 −0.9 (4)
C8—P1—C4—C6 33.9 (2) C31—C20—N1—Ag1 −176.6 (2)
Ag1—P1—C4—C6 154.6 (2) C21—C23—N1—C20 1.0 (3)
C1—P1—C4—C5 103.2 (2) C24—C23—N1—C20 −178.4 (2)
C8—P1—C4—C5 −147.2 (2) C21—C23—N1—Ag1 177.19 (17)
Ag1—P1—C4—C5 −26.5 (2) C24—C23—N1—Ag1 −2.2 (3)
C5—C4—C6—C12 −1.2 (4) N2—Ag1—N1—C20 177.5 (2)
P1—C4—C6—C12 177.6 (2) P1—Ag1—N1—C20 5.5 (3)
C13—C7—C5—C4 −2.4 (5) N2—Ag1—N1—C23 1.63 (15)
C6—C4—C5—C7 2.1 (4) P1—Ag1—N1—C23 −170.45 (11)
P1—C4—C5—C7 −176.8 (2) C26—C24—N2—C27 −0.4 (3)
C11—C10—C8—C9 0.1 (4) C23—C24—N2—C27 178.9 (2)
C11—C10—C8—P1 −173.6 (3) C26—C24—N2—Ag1 −179.12 (18)
C4—P1—C8—C10 −140.7 (2) C23—C24—N2—Ag1 0.2 (3)
C1—P1—C8—C10 −29.2 (2) N1—Ag1—N2—C27 −179.6 (2)
Ag1—P1—C8—C10 95.1 (2) P1—Ag1—N2—C27 −9.5 (3)
C4—P1—C8—C9 45.7 (2) N1—Ag1—N2—C24 −0.94 (15)
C1—P1—C8—C9 157.17 (19) P1—Ag1—N2—C24 169.11 (11)
Ag1—P1—C8—C9 −78.53 (19) N2—C24—C26—C28 179.0 (3)
C8—C10—C11—C17 −1.3 (5) C23—C24—C26—C28 −0.3 (4)
C10—C8—C9—C18 0.8 (4) N2—C24—C26—C25 0.2 (4)
P1—C8—C9—C18 174.6 (2) C23—C24—C26—C25 −179.1 (2)
C4—C6—C12—C13 0.7 (5) C29—C25—C26—C28 −178.6 (4)
C6—C12—C13—C7 −1.0 (5) C29—C25—C26—C24 0.1 (5)
C5—C7—C13—C12 1.9 (5) C24—N2—C27—C29 0.2 (4)
C1—C2—C14—C15 −1.9 (6) Ag1—N2—C27—C29 178.8 (3)
C1—C3—C16—C15 −0.6 (6) C21—C22—C28—C26 1.2 (6)
C2—C14—C15—C16 −0.9 (6) C24—C26—C28—C22 −1.0 (5)
C3—C16—C15—C14 2.1 (6) C25—C26—C28—C22 177.7 (3)
C8—C9—C18—C17 −0.6 (5) C26—C25—C29—C27 −0.3 (6)
C10—C11—C17—C18 1.5 (6) N2—C27—C29—C25 0.1 (6)
C9—C18—C17—C11 −0.5 (5) N1—C20—C31—C30 1.1 (5)
O1—S1—C19—F2 174.6 (5) C20—C31—C30—C21 −1.2 (5)
O2—S1—C19—F2 49.8 (6) C23—C21—C30—C31 1.2 (5)
O3—S1—C19—F2 −68.6 (6) C22—C21—C30—C31 −179.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H16···O2 0.93 2.36 3.285 (6) 173

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2241).

References

  1. Awaleh, M. O., Badia, A. & Brisse, F. (2005a). Inorg. Chem.44, 7833–7845. [DOI] [PubMed]
  2. Awaleh, M. O., Badia, A. & Brisse, F. (2005b). Cryst. Growth Des.5, 1897–1906.
  3. Bowmaker, G. A., Effendy, Marfuah, S., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371–4388.
  4. Bruker (2007). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Di Nicola, C., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1433–1450.
  6. Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007b). Inorg. Chim. Acta, 360, 1451–1465.
  7. Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2007a). Inorg. Chim. Acta, 360, 1424–1432.
  8. Howells, R. D. & Mccown, J. D. (1977). Chem. Rev.77, 19–92.
  9. Jin, Q. H., Hu, K. Y. S. L. L., Wang, R., Zuo, X., Zhang, C. L. & Lu, X. M. (2009). Polyhedron, doi: 10.1016/j.poly.2009.06.036.
  10. Jin, Q. H., Xin, X. L., Zhu, F. J. & Li, Y. (1999). Z. Kristallogr. New Cryst. Struct.214, 503–504.
  11. Lawrance, G. A. (1986). Chem. Rev.86, 17–33.
  12. Pettinari, C., Ngoune, J., Skelton, B. W. & White, A. H. (2007). Inorg. Chem. Commun.10, 329–331.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032097/wm2241sup1.cif

e-65-m1096-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032097/wm2241Isup2.hkl

e-65-m1096-Isup2.hkl (465.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES