Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):m1054. doi: 10.1107/S1600536809030931

Bis(2-amino­benzothia­zole-κN 1)bis­(thio­cyanato-κN)zinc(II)

Seung Wook Suh a, Chong-Hyeak Kim b, Inn Hoe Kim a,*
PMCID: PMC2969946  PMID: 21577414

Abstract

The ZnII ion in the title complex, [Zn(NCS)2(C7H6N2S)2], is tetra­hedrally coordinated within an N4 donor set defined by two N atoms of two terminal isothio­cyanate ligands and by two heterocyclic N atoms of two different 2-amino­benzothia­zole ligands. This arrangement is stabilized by intra­molecular N—H⋯N hydrogen bonds. In the crystal structure, mol­ecules are linked through N—H⋯S hydrogen bonds to form a two-dimensional array.

Related literature

For related literature on organic–inorganic hybrid supra­molecular complexes, see: Batten & Robson (1998); Braga et al. (1998); Iwamoto (1996). For the use of pseudo-halides in the construction of supra­molecular assemblies, see: Vrieze & Koten (1987); Cortes et al. (1997); Yun et al. (2004); Kim et al. (2001, 2008). For the coordination chemistry of imidazole and thia­zole derivatives, see: Balch et al. (1993); Costes et al. (1991); Suh et al. (2005, 2007).graphic file with name e-65-m1054-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)2(C7H6N2S)2]

  • M r = 481.93

  • Triclinic, Inline graphic

  • a = 8.4379 (1) Å

  • b = 9.4900 (1) Å

  • c = 13.3037 (2) Å

  • α = 97.735 (1)°

  • β = 107.302 (1)°

  • γ = 94.232 (1)°

  • V = 1000.52 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 296 K

  • 0.41 × 0.28 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi scan (SADABS; Bruker, 2001) T min = 0.550, T max = 0.722

  • 19351 measured reflections

  • 4901 independent reflections

  • 4238 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.05

  • 4901 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030931/tk2521sup1.cif

e-65-m1054-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030931/tk2521Isup2.hkl

e-65-m1054-Isup2.hkl (240KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N20—H20A⋯N1 0.86 2.24 3.027 (3) 152
N20—H20B⋯S1i 0.86 2.70 3.5015 (19) 156
N30—H30A⋯N2 0.86 2.21 3.002 (3) 152
N30—H30B⋯S2ii 0.86 2.57 3.404 (2) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Organic-inorganic hybrid supramolecular complexes of 1-, 2-, and 3-D frameworks has attracted great interest recently (Iwamoto, 1996; Batten & Robson, 1998), as they have useful properties, viz. electronic, magnetic, optical, catalytic, etc. (Braga et al., 1998). For designing novel multi-dimensional frameworks, we (Kim et al., 2001; Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of various pseudohalide ions and complementary organic ligands. Pseudo-halide ions, e.g. CN-, SCN-, N3-, are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is also known to play an important role in stabilizing multi-dimensional structures. In particulae, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, frameworks of metal complexes containing thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular framework structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007). Herein, we present the synthesis and structure determination of the title complex, (I), with 2-aminobenzothiazole, Fig. 1.

Experimental

A water-methanolic (1:1) solution (20 ml) of potassium thiocyanate (2 mmol, 0.19 g) was added to a water-methanolic (1:1) solution (20 ml) of Zn(NO3)2.6H2O (1 mmol, 0.30 g). To this mixture, a water-methanolic (1:1) solution (20 ml) of 2-aminobenzothiazole (3 mmol, 0.45 g) was introduced, with stirring. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a few days silver blocks were obtained. Elemental analysis found: C 40.41, H 2.67, N 18.11, S 26.59, Zn 13.60%; C16H12N6S4Zn requires: C 39.87, H 2.51, N 17.44, S 26.61, Zn 13.56%.

Refinement

Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Zn(NCS)2(C7H6N2S)2] Z = 2
Mr = 481.93 F(000) = 488
Triclinic, P1 Dx = 1.600 Mg m3Dm = 1.59 Mg m3Dm measured by flotation method
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4379 (1) Å Cell parameters from 9879 reflections
b = 9.4900 (1) Å θ = 2.5–28.1°
c = 13.3037 (2) Å µ = 1.66 mm1
α = 97.735 (1)° T = 296 K
β = 107.302 (1)° Block, silver
γ = 94.232 (1)° 0.41 × 0.28 × 0.21 mm
V = 1000.52 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4901 independent reflections
Radiation source: fine-focus sealed tube 4238 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 28.3°, θmin = 1.6°
Absorption correction: multi scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.550, Tmax = 0.722 k = −12→12
19351 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.369P] where P = (Fo2 + 2Fc2)/3
4901 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.33334 (3) 0.77964 (2) 0.744958 (17) 0.04196 (8)
S1 0.11604 (9) 0.33772 (8) 0.79681 (7) 0.0884 (3)
C1 0.2117 (3) 0.4851 (2) 0.78611 (17) 0.0523 (5)
N1 0.2812 (2) 0.5896 (2) 0.77780 (16) 0.0613 (5)
S2 −0.15336 (6) 0.99430 (6) 0.72597 (4) 0.05379 (13)
C2 0.0121 (2) 0.9254 (2) 0.72033 (14) 0.0431 (4)
N2 0.1339 (2) 0.8781 (2) 0.71756 (15) 0.0588 (5)
S11 0.80227 (6) 0.93870 (7) 1.02664 (4) 0.05593 (14)
C12 0.6289 (2) 0.8274 (2) 0.94188 (15) 0.0439 (4)
N13 0.52630 (18) 0.88677 (16) 0.86862 (12) 0.0395 (3)
C14 0.5820 (2) 1.0329 (2) 0.87934 (15) 0.0412 (4)
C15 0.5032 (3) 1.1285 (2) 0.81714 (17) 0.0511 (5)
H15A 0.4031 1.0990 0.7625 0.061*
C16 0.5770 (3) 1.2695 (2) 0.8383 (2) 0.0650 (6)
H16A 0.5260 1.3349 0.7968 0.078*
C17 0.7250 (4) 1.3142 (3) 0.9199 (2) 0.0728 (7)
H17A 0.7721 1.4091 0.9322 0.087*
C18 0.8037 (3) 1.2210 (3) 0.9829 (2) 0.0666 (6)
H18A 0.9029 1.2515 1.0381 0.080*
C19 0.7310 (2) 1.0799 (2) 0.96185 (16) 0.0495 (5)
N20 0.6088 (2) 0.6899 (2) 0.95306 (15) 0.0591 (5)
H20A 0.5240 0.6334 0.9106 0.071*
H20B 0.6807 0.6578 1.0027 0.071*
S21 0.44673 (11) 0.79917 (8) 0.43370 (5) 0.0764 (2)
C22 0.3431 (3) 0.8192 (3) 0.52843 (18) 0.0590 (5)
N23 0.4067 (2) 0.76110 (17) 0.61379 (13) 0.0458 (4)
C24 0.5455 (2) 0.6922 (2) 0.60632 (16) 0.0468 (4)
C25 0.6394 (3) 0.6195 (2) 0.6816 (2) 0.0583 (5)
H25A 0.6128 0.6118 0.7438 0.070*
C26 0.7738 (3) 0.5585 (3) 0.6631 (3) 0.0790 (8)
H26A 0.8379 0.5088 0.7131 0.095*
C27 0.8139 (4) 0.5707 (4) 0.5707 (3) 0.0895 (10)
H27A 0.9055 0.5296 0.5599 0.107*
C28 0.7221 (4) 0.6415 (3) 0.4953 (3) 0.0801 (8)
H28A 0.7495 0.6489 0.4333 0.096*
C29 0.5858 (3) 0.7027 (2) 0.51366 (18) 0.0580 (5)
N30 0.2092 (3) 0.8888 (3) 0.51170 (19) 0.0971 (9)
H30A 0.1575 0.8984 0.5586 0.116*
H30B 0.1741 0.9243 0.4540 0.116*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.03854 (12) 0.04733 (13) 0.03935 (13) 0.00595 (9) 0.01096 (9) 0.00711 (9)
S1 0.0599 (4) 0.0743 (4) 0.1198 (6) −0.0084 (3) −0.0023 (4) 0.0550 (4)
C1 0.0425 (10) 0.0574 (11) 0.0531 (12) 0.0052 (9) 0.0048 (8) 0.0190 (9)
N1 0.0610 (11) 0.0563 (10) 0.0661 (12) −0.0027 (9) 0.0190 (9) 0.0155 (9)
S2 0.0406 (2) 0.0668 (3) 0.0544 (3) 0.0127 (2) 0.0152 (2) 0.0070 (2)
C2 0.0407 (9) 0.0515 (10) 0.0338 (9) 0.0031 (8) 0.0079 (7) 0.0053 (7)
N2 0.0448 (9) 0.0739 (12) 0.0547 (11) 0.0161 (8) 0.0120 (8) 0.0036 (9)
S11 0.0412 (3) 0.0730 (3) 0.0447 (3) 0.0075 (2) 0.0039 (2) 0.0007 (2)
C12 0.0407 (9) 0.0573 (11) 0.0344 (9) 0.0084 (8) 0.0123 (7) 0.0076 (8)
N13 0.0372 (7) 0.0487 (8) 0.0335 (8) 0.0062 (6) 0.0115 (6) 0.0077 (6)
C14 0.0392 (9) 0.0484 (9) 0.0403 (10) 0.0048 (7) 0.0211 (7) 0.0025 (7)
C15 0.0553 (12) 0.0523 (11) 0.0507 (12) 0.0096 (9) 0.0230 (9) 0.0094 (9)
C16 0.0811 (17) 0.0519 (12) 0.0756 (16) 0.0145 (11) 0.0418 (14) 0.0134 (11)
C17 0.0772 (17) 0.0495 (12) 0.097 (2) −0.0037 (12) 0.0448 (15) −0.0048 (13)
C18 0.0529 (12) 0.0634 (14) 0.0774 (17) −0.0043 (11) 0.0255 (12) −0.0152 (12)
C19 0.0417 (10) 0.0582 (11) 0.0483 (11) 0.0033 (8) 0.0195 (8) −0.0032 (9)
N20 0.0611 (11) 0.0609 (10) 0.0503 (11) 0.0088 (9) 0.0041 (8) 0.0213 (8)
S21 0.1069 (6) 0.0854 (4) 0.0525 (4) 0.0214 (4) 0.0440 (4) 0.0158 (3)
C22 0.0754 (15) 0.0659 (13) 0.0435 (12) 0.0224 (11) 0.0250 (10) 0.0133 (10)
N23 0.0508 (9) 0.0488 (8) 0.0403 (9) 0.0130 (7) 0.0164 (7) 0.0072 (7)
C24 0.0438 (10) 0.0428 (9) 0.0506 (11) 0.0013 (8) 0.0161 (8) −0.0041 (8)
C25 0.0482 (11) 0.0591 (12) 0.0647 (14) 0.0136 (9) 0.0143 (10) 0.0034 (10)
C26 0.0526 (13) 0.0797 (17) 0.097 (2) 0.0223 (12) 0.0147 (13) −0.0010 (15)
C27 0.0536 (15) 0.097 (2) 0.112 (3) 0.0153 (14) 0.0316 (16) −0.0227 (19)
C28 0.0709 (17) 0.0879 (18) 0.0829 (19) −0.0006 (14) 0.0436 (15) −0.0206 (15)
C29 0.0603 (13) 0.0569 (12) 0.0562 (13) −0.0002 (10) 0.0271 (10) −0.0092 (10)
N30 0.116 (2) 0.142 (2) 0.0636 (15) 0.0820 (19) 0.0421 (14) 0.0543 (15)

Geometric parameters (Å, °)

Zn—N2 1.9482 (18) C18—C19 1.387 (3)
Zn—N1 1.9610 (18) C18—H18A 0.9300
Zn—N23 2.0089 (16) N20—H20A 0.8600
Zn—N13 2.0257 (15) N20—H20B 0.8600
S1—C1 1.607 (2) S21—C22 1.733 (2)
C1—N1 1.150 (3) S21—C29 1.739 (3)
S2—C2 1.602 (2) C22—N23 1.315 (3)
C2—N2 1.160 (3) C22—N30 1.328 (3)
S11—C12 1.731 (2) N23—C24 1.405 (2)
S11—C19 1.738 (2) C24—C25 1.379 (3)
C12—N13 1.317 (2) C24—C29 1.387 (3)
C12—N20 1.337 (3) C25—C26 1.381 (3)
N13—C14 1.406 (2) C25—H25A 0.9300
C14—C15 1.383 (3) C26—C27 1.386 (5)
C14—C19 1.396 (3) C26—H26A 0.9300
C15—C16 1.389 (3) C27—C28 1.361 (5)
C15—H15A 0.9300 C27—H27A 0.9300
C16—C17 1.382 (4) C28—C29 1.396 (3)
C16—H16A 0.9300 C28—H28A 0.9300
C17—C18 1.372 (4) N30—H30A 0.8600
C17—H17A 0.9300 N30—H30B 0.8600
N2—Zn—N1 109.42 (9) C18—C19—S11 128.30 (19)
N2—Zn—N23 108.31 (8) C14—C19—S11 110.17 (15)
N1—Zn—N23 110.24 (8) C12—N20—H20A 120.0
N2—Zn—N13 112.85 (7) C12—N20—H20B 120.0
N1—Zn—N13 108.15 (7) H20A—N20—H20B 120.0
N23—Zn—N13 107.85 (6) C22—S21—C29 89.42 (11)
N1—C1—S1 179.1 (2) N23—C22—N30 124.7 (2)
C1—N1—Zn 163.33 (19) N23—C22—S21 115.26 (17)
N2—C2—S2 178.5 (2) N30—C22—S21 119.99 (18)
C2—N2—Zn 165.33 (19) C22—N23—C24 111.00 (17)
C12—S11—C19 89.28 (10) C22—N23—Zn 126.00 (15)
N13—C12—N20 124.72 (18) C24—N23—Zn 122.79 (13)
N13—C12—S11 115.89 (15) C25—C24—C29 120.2 (2)
N20—C12—S11 119.39 (15) C25—C24—N23 125.73 (19)
C12—N13—C14 110.52 (16) C29—C24—N23 114.10 (19)
C12—N13—Zn 125.21 (13) C24—C25—C26 118.8 (2)
C14—N13—Zn 123.77 (12) C24—C25—H25A 120.6
C15—C14—C19 119.82 (18) C26—C25—H25A 120.6
C15—C14—N13 126.06 (18) C25—C26—C27 120.5 (3)
C19—C14—N13 114.12 (17) C25—C26—H26A 119.7
C14—C15—C16 118.4 (2) C27—C26—H26A 119.7
C14—C15—H15A 120.8 C28—C27—C26 121.4 (3)
C16—C15—H15A 120.8 C28—C27—H27A 119.3
C17—C16—C15 121.1 (2) C26—C27—H27A 119.3
C17—C16—H16A 119.5 C27—C28—C29 118.2 (3)
C15—C16—H16A 119.5 C27—C28—H28A 120.9
C18—C17—C16 121.2 (2) C29—C28—H28A 120.9
C18—C17—H17A 119.4 C24—C29—C28 120.9 (3)
C16—C17—H17A 119.4 C24—C29—S21 110.20 (16)
C17—C18—C19 118.0 (2) C28—C29—S21 128.9 (2)
C17—C18—H18A 121.0 C22—N30—H30A 120.0
C19—C18—H18A 121.0 C22—N30—H30B 120.0
C18—C19—C14 121.5 (2) H30A—N30—H30B 120.0
N2—Zn—N1—C1 16.6 (7) N13—C14—C19—S11 0.15 (19)
N23—Zn—N1—C1 −102.4 (7) C12—S11—C19—C18 179.7 (2)
N13—Zn—N1—C1 139.9 (7) C12—S11—C19—C14 −0.90 (14)
N1—Zn—N2—C2 44.1 (7) C29—S21—C22—N23 0.9 (2)
N23—Zn—N2—C2 164.3 (7) C29—S21—C22—N30 −178.9 (2)
N13—Zn—N2—C2 −76.3 (7) N30—C22—N23—C24 178.5 (2)
C19—S11—C12—N13 1.57 (15) S21—C22—N23—C24 −1.3 (3)
C19—S11—C12—N20 −179.42 (17) N30—C22—N23—Zn −6.6 (4)
N20—C12—N13—C14 179.31 (18) S21—C22—N23—Zn 173.67 (10)
S11—C12—N13—C14 −1.7 (2) N2—Zn—N23—C22 7.0 (2)
N20—C12—N13—Zn −8.6 (3) N1—Zn—N23—C22 126.68 (19)
S11—C12—N13—Zn 170.34 (8) N13—Zn—N23—C22 −115.45 (19)
N2—Zn—N13—C12 139.20 (15) N2—Zn—N23—C24 −178.63 (14)
N1—Zn—N13—C12 18.00 (17) N1—Zn—N23—C24 −58.93 (16)
N23—Zn—N13—C12 −101.21 (15) N13—Zn—N23—C24 58.94 (15)
N2—Zn—N13—C14 −49.73 (15) C22—N23—C24—C25 −179.3 (2)
N1—Zn—N13—C14 −170.92 (13) Zn—N23—C24—C25 5.6 (3)
N23—Zn—N13—C14 69.87 (14) C22—N23—C24—C29 1.1 (3)
C12—N13—C14—C15 −178.80 (18) Zn—N23—C24—C29 −174.00 (14)
Zn—N13—C14—C15 9.0 (2) C29—C24—C25—C26 0.3 (3)
C12—N13—C14—C19 1.0 (2) N23—C24—C25—C26 −179.3 (2)
Zn—N13—C14—C19 −171.23 (12) C24—C25—C26—C27 0.3 (4)
C19—C14—C15—C16 0.8 (3) C25—C26—C27—C28 −0.6 (5)
N13—C14—C15—C16 −179.38 (18) C26—C27—C28—C29 0.3 (4)
C14—C15—C16—C17 −0.5 (3) C25—C24—C29—C28 −0.6 (3)
C15—C16—C17—C18 −0.2 (4) N23—C24—C29—C28 179.0 (2)
C16—C17—C18—C19 0.5 (4) C25—C24—C29—S21 179.88 (16)
C17—C18—C19—C14 −0.1 (3) N23—C24—C29—S21 −0.5 (2)
C17—C18—C19—S11 179.27 (18) C27—C28—C29—C24 0.3 (4)
C15—C14—C19—C18 −0.6 (3) C27—C28—C29—S21 179.8 (2)
N13—C14—C19—C18 179.61 (18) C22—S21—C29—C24 −0.17 (17)
C15—C14—C19—S11 179.95 (14) C22—S21—C29—C28 −179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N20—H20A···N1 0.86 2.24 3.027 (3) 152
N20—H20B···S1i 0.86 2.70 3.5015 (19) 156
N30—H30A···N2 0.86 2.21 3.002 (3) 152
N30—H30B···S2ii 0.86 2.57 3.404 (2) 162

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2521).

References

  1. Balch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem.32, 2901–2905.
  2. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494. [DOI] [PubMed]
  3. Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev.98, 1375–1406. [DOI] [PubMed]
  4. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem.36, 5016–5021.
  6. Costes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem.30, 1887–1892.
  7. Iwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643–690. Oxford: Pergamon Press.
  8. Kim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol.21, 562–568.
  9. Kim, I. H., Suh, S. W., Kim, C. H., Kim, J. G. & Suh, I. H. (2001). Korean J. Crystallogr.12, 207–211.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol.18, 391–395.
  12. Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.
  13. Vrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225–244. Oxford: Pergamon Press.
  14. Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem.57, 321–327.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030931/tk2521sup1.cif

e-65-m1054-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030931/tk2521Isup2.hkl

e-65-m1054-Isup2.hkl (240KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES