Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):m1045–m1046. doi: 10.1107/S1600536809030281

catena-Poly[[bis­(2-hydr­oxy-2-phenyl­acetato-κ2 O 1,O 2)zinc(II)]-μ-1,2-di-4-pyridylethane-κ2 N:N′]

Seung Man Yu a, Dong Hoon Shin a, Pan-Gi Kim b,*, Cheal Kim a, Youngmee Kim c,*
PMCID: PMC2969950  PMID: 21577407

Abstract

The title compound, [Zn(C8H6O3)2(C12H12N2)]n, consists of [Zn(Hopa)2] (H2opa = 2-hydr­oxy-2-phenyl­acetic acid or mandelic acid) units bridged by 1,2-di-4-pyridylethane (bpe) ligands, forming a polymeric chain developing parallel to the b axis. The bridging bpe ligand is arranged around a twofold axis passing through the middle of the ethane C—C bond. The geometry around the ZnII ion is distorted octa­hedral, constructed by four O atoms from two Hopa ligands and two N atoms from two bridging bpe ligands. O—H⋯O hydrogen bonds link the chains, forming a three-dimensional network.

Related literature

Transition metal ions are the major cationic contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008). For related structures, see: Balboa et al. (2008); Beghidja et al. (2005); Hao et al. (2009); Lee et al. (2008); Park et al. (2008); Shin et al. (2009); Wermester et al. (2007); Yu et al. (2008). graphic file with name e-65-m1045-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H6O3)2(C12H12N2)]

  • M r = 551.90

  • Hexagonal, Inline graphic

  • a = 11.1360 (6) Å

  • c = 33.110 (3) Å

  • V = 3555.9 (4) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.933, T max = 0.944

  • 17715 measured reflections

  • 2347 independent reflections

  • 2045 reflections with I > 2σ(I)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.068

  • S = 1.04

  • 2347 reflections

  • 168 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 870 Friedel pairs

  • Flack parameter: −0.002 (16)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030281/dn2478sup1.cif

e-65-m1045-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030281/dn2478Isup2.hkl

e-65-m1045-Isup2.hkl (113.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13O⋯O12i 0.85 1.77 2.619 (3) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Korea Ministry of the Environment ‘ET-Human Resource Development Project’ and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

supplementary crystallographic information

Comment

A great attention has been paid to transition metal ions as the major cation contributors to the biologically active molecules such as amino acids, proteins, sugars, nucleotides etc (Daniele, et al., 2008). This interest has driven us to study on the interaction of the transition metal ions with fulvic acids or humic acids. As models to examine the interaction, therefore, we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, and di-2-pyridyl ketone(Lee et al., 2008; Yu et al., 2008; Park et al., 2008; Shin et al., 2009).

Mandelic acid (2-hydroxy-2-phenylacetic acid, H2opa) is also one of the simplest bioactive molecules exhibiting a variety of coordinating and supramolecular interaction abilities (Balboa et al., 2008; Beghidja et al.,2005; Hao et al., 2009; Wermester et al., 2007). In order to study the interaction of the biologically active molecule mandelic acid with zinc(II) ion, in the present work, we have employed zinc(II) mandelate as a building block and 1,2-di-4-pyridylethane (bpe) as a ligand. We report herein the structure of new zinc(II) mandelate with 1,2-di-4-pyridylethane.

The crystal structure contains [Zn(Hopa)2] units bridged by bpe ligands forming a polymeric chain developping parallel to the b axis. The bridging 1,2-di-4-pyridylethane (bpe) ligand is arranged around a two fold axis going through the middle of C26—C26ii bond (symmetry code: (ii) x, x-y+2, -z+1/6). The geometry around the ZnII ion is distorted octahedral constructed by four oxygen atoms from two Hopa- and two nitrogen atoms from two bridging bpe ligands (Fig. 1). The occurence of O-H···O hydrogen bonds links the chains to form a three dimensionnal network.

Experimental

38.0 mg (0.125 mmol) of Zn(NO3)2.6H2O and 38.4 mg (0.25 mmol) of 2-hydroxy-2-phenylacetic acid were dissolved in 4 ml water and carefully layered by 4 ml solution of a mixture of acetone, methanol and ethanol (2/2/2) of 1,2-di-4-pyridylethane ligand (46.0 mg, 0.25 mmol). Suitable crystals of the title compoundfor X-ray analysis were obtained in a few weeks.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyne),0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). H atom attached to O was located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, it was treated as riding on its parent atom.

Figures

Fig. 1.

Fig. 1.

View of compound I with the atom labeling scheme. Displacement ellipsoids are drawn at the 30° probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, x-y+1, -z+1/6; (ii) x, x-y+2, -z+1/6].

Crystal data

[Zn(C8H6O3)2(C12H12N2)] Dx = 1.546 Mg m3
Mr = 551.90 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6122 Cell parameters from 1751 reflections
Hall symbol: P 61 2 (0 0 -1) θ = 2.2–18.9°
a = 11.1360 (6) Å µ = 1.09 mm1
c = 33.110 (3) Å T = 293 K
V = 3555.9 (4) Å3 Rod, colorless
Z = 6 0.10 × 0.05 × 0.05 mm
F(000) = 1716

Data collection

Bruker SMART CCD diffractometer 2347 independent reflections
Radiation source: fine-focus sealed tube 2045 reflections with I > 2σ(I)
graphite Rint = 0.077
φ and ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −13→13
Tmin = 0.933, Tmax = 0.944 k = −11→13
17715 measured reflections l = −40→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.016P)2 + 1.0575P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2347 reflections Δρmax = 0.22 e Å3
168 parameters Δρmin = −0.21 e Å3
1 restraint Absolute structure: Flack (1983), 870 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.002 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.73603 (4) 0.86802 (2) 0.0833 0.01944 (12)
O11 0.76202 (18) 0.84579 (18) 0.02239 (5) 0.0216 (4)
O12 0.89644 (18) 0.82448 (18) −0.02384 (5) 0.0245 (5)
O13 0.89365 (17) 0.81243 (17) 0.08319 (5) 0.0233 (4)
H13O 0.9568 0.8433 0.1013 0.035*
N21 0.5928 (2) 0.9386 (2) 0.07376 (7) 0.0223 (5)
C11 0.8619 (3) 0.8302 (2) 0.01183 (8) 0.0191 (6)
C12 0.9540 (3) 0.8194 (3) 0.04470 (8) 0.0179 (6)
H12 1.0448 0.9043 0.0438 0.022*
C13 0.9761 (3) 0.6975 (3) 0.03869 (8) 0.0201 (6)
C14 1.1078 (3) 0.7159 (3) 0.03588 (9) 0.0284 (7)
H14 1.1839 0.8052 0.0368 0.034*
C15 1.1293 (4) 0.6038 (4) 0.03167 (10) 0.0394 (8)
H15 1.2189 0.6185 0.0295 0.047*
C16 1.0181 (4) 0.4716 (4) 0.03078 (10) 0.0423 (9)
H16 1.0316 0.3960 0.0283 0.051*
C17 0.8862 (4) 0.4520 (3) 0.03359 (9) 0.0382 (8)
H17 0.8105 0.3624 0.0328 0.046*
C18 0.8639 (3) 0.5636 (3) 0.03754 (8) 0.0280 (6)
H18 0.7741 0.5486 0.0394 0.034*
C21 0.6235 (3) 1.0429 (3) 0.04786 (9) 0.0310 (8)
H21 0.7018 1.0742 0.0317 0.037*
C22 0.5445 (3) 1.1057 (3) 0.04412 (10) 0.0357 (8)
H22 0.5682 1.1757 0.0252 0.043*
C23 0.4294 (3) 1.0642 (3) 0.06862 (10) 0.0289 (7)
C24 0.4001 (3) 0.9599 (3) 0.09618 (9) 0.0288 (7)
H24 0.3251 0.9299 0.1136 0.035*
C25 0.4832 (3) 0.9009 (3) 0.09751 (8) 0.0252 (6)
H25 0.4613 0.8304 0.1161 0.030*
C26 0.3364 (3) 1.1263 (3) 0.06523 (12) 0.0520 (11)
H26A 0.2422 1.0517 0.0607 0.062*
H26B 0.3641 1.1857 0.0416 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0209 (2) 0.01972 (17) 0.0181 (2) 0.01044 (12) 0.000 −0.00108 (18)
O11 0.0248 (10) 0.0247 (10) 0.0185 (10) 0.0148 (8) −0.0010 (8) 0.0008 (8)
O12 0.0311 (12) 0.0325 (11) 0.0154 (10) 0.0200 (9) 0.0007 (9) 0.0017 (8)
O13 0.0270 (10) 0.0352 (10) 0.0135 (9) 0.0198 (9) −0.0050 (9) −0.0048 (8)
N21 0.0218 (12) 0.0224 (12) 0.0213 (14) 0.0101 (10) 0.0011 (10) 0.0006 (10)
C11 0.0231 (13) 0.0141 (14) 0.0176 (15) 0.0074 (12) −0.0024 (13) −0.0004 (11)
C12 0.0190 (13) 0.0189 (13) 0.0142 (14) 0.0083 (10) −0.0012 (11) −0.0025 (11)
C13 0.0274 (15) 0.0231 (15) 0.0113 (13) 0.0137 (12) −0.0034 (11) 0.0004 (12)
C14 0.0297 (17) 0.0309 (16) 0.0296 (18) 0.0189 (14) −0.0055 (13) −0.0065 (14)
C15 0.048 (2) 0.057 (2) 0.0319 (19) 0.040 (2) −0.0055 (17) −0.0054 (17)
C16 0.080 (3) 0.049 (2) 0.0260 (18) 0.053 (2) −0.0044 (18) −0.0044 (16)
C17 0.062 (2) 0.0242 (17) 0.0226 (17) 0.0172 (17) −0.0001 (16) −0.0020 (14)
C18 0.0350 (16) 0.0237 (16) 0.0215 (15) 0.0117 (14) −0.0015 (14) −0.0003 (13)
C21 0.0241 (16) 0.0359 (18) 0.0286 (18) 0.0118 (14) 0.0005 (13) 0.0089 (14)
C22 0.0329 (18) 0.0310 (18) 0.0393 (19) 0.0131 (16) −0.0083 (15) 0.0094 (14)
C23 0.0298 (17) 0.0265 (15) 0.0344 (19) 0.0172 (14) −0.0179 (14) −0.0153 (14)
C24 0.0275 (17) 0.0359 (18) 0.0293 (17) 0.0206 (14) 0.0010 (13) −0.0039 (14)
C25 0.0306 (16) 0.0239 (16) 0.0219 (15) 0.0143 (12) 0.0033 (13) 0.0018 (12)
C26 0.039 (2) 0.0319 (17) 0.093 (3) 0.0242 (16) −0.0356 (19) −0.0234 (19)

Geometric parameters (Å, °)

Zn1—O11 2.0707 (17) C15—C16 1.371 (5)
Zn1—O11i 2.0707 (17) C15—H15 0.9300
Zn1—N21 2.125 (2) C16—C17 1.376 (5)
Zn1—N21i 2.125 (2) C16—H16 0.9300
Zn1—O13i 2.1332 (17) C17—C18 1.390 (4)
Zn1—O13 2.1332 (17) C17—H17 0.9300
O11—C11 1.258 (3) C18—H18 0.9300
O12—C11 1.254 (3) C21—C22 1.376 (4)
O13—C12 1.425 (3) C21—H21 0.9300
O13—H13O 0.8543 C22—C23 1.386 (4)
N21—C25 1.332 (3) C22—H22 0.9300
N21—C21 1.344 (3) C23—C24 1.381 (4)
C11—C12 1.541 (4) C23—C26 1.511 (4)
C12—C13 1.509 (4) C24—C25 1.378 (4)
C12—H12 0.9800 C24—H24 0.9300
C13—C14 1.379 (4) C25—H25 0.9300
C13—C18 1.387 (4) C26—C26ii 1.519 (7)
C14—C15 1.390 (4) C26—H26A 0.9700
C14—H14 0.9300 C26—H26B 0.9700
O11—Zn1—O11i 166.10 (10) C13—C14—H14 119.3
O11—Zn1—N21 94.27 (8) C15—C14—H14 119.3
O11i—Zn1—N21 94.75 (8) C16—C15—C14 119.8 (3)
O11—Zn1—N21i 94.75 (8) C16—C15—H15 120.1
O11i—Zn1—N21i 94.27 (8) C14—C15—H15 120.1
N21—Zn1—N21i 98.92 (11) C15—C16—C17 119.3 (3)
O11—Zn1—O13i 92.80 (7) C15—C16—H16 120.4
O11i—Zn1—O13i 77.21 (7) C17—C16—H16 120.4
N21—Zn1—O13i 86.60 (7) C16—C17—C18 121.2 (3)
N21i—Zn1—O13i 170.28 (8) C16—C17—H17 119.4
O11—Zn1—O13 77.21 (7) C18—C17—H17 119.4
O11i—Zn1—O13 92.80 (7) C13—C18—C17 119.8 (3)
N21—Zn1—O13 170.28 (8) C13—C18—H18 120.1
N21i—Zn1—O13 86.60 (7) C17—C18—H18 120.1
O13i—Zn1—O13 89.11 (9) N21—C21—C22 123.1 (3)
C11—O11—Zn1 118.26 (16) N21—C21—H21 118.5
C12—O13—Zn1 114.85 (15) C22—C21—H21 118.5
C12—O13—H13O 109.5 C21—C22—C23 119.8 (3)
Zn1—O13—H13O 120.8 C21—C22—H22 120.1
C25—N21—C21 116.5 (2) C23—C22—H22 120.1
C25—N21—Zn1 122.35 (18) C24—C23—C22 117.2 (3)
C21—N21—Zn1 120.11 (19) C24—C23—C26 120.4 (3)
O12—C11—O11 125.7 (3) C22—C23—C26 122.4 (3)
O12—C11—C12 115.4 (2) C25—C24—C23 119.3 (3)
O11—C11—C12 118.9 (2) C25—C24—H24 120.4
O13—C12—C13 110.7 (2) C23—C24—H24 120.4
O13—C12—C11 108.8 (2) N21—C25—C24 124.0 (3)
C13—C12—C11 113.0 (2) N21—C25—H25 118.0
O13—C12—H12 108.1 C24—C25—H25 118.0
C13—C12—H12 108.1 C23—C26—C26ii 115.7 (3)
C11—C12—H12 108.1 C23—C26—H26A 108.4
C14—C13—C18 118.5 (3) C26ii—C26—H26A 108.4
C14—C13—C12 121.0 (3) C23—C26—H26B 108.4
C18—C13—C12 120.4 (2) C26ii—C26—H26B 108.4
C13—C14—C15 121.4 (3) H26A—C26—H26B 107.4

Symmetry codes: (i) x, xy+1, −z+1/6; (ii) x, xy+2, −z+1/6.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O13—H13O···O12iii 0.85 1.77 2.619 (3) 173

Symmetry codes: (iii) xy+1, x, z+1/6.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2478).

References

  1. Balboa, S., Carballo, R., Castineiras, A., Gonzalez-Perez, J. M. & Niclos-Gutierrez, J. (2008). Polyhedron, 27, 2921–2930.
  2. Beghidja, A., Hallynck, S., Welter, R. & Rabu, P. (2005). Eur. J. Inorg. Chem pp. 662–669.
  3. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev 252, 1093–1107.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hao, H.-Q., Liu, W.-T., Tan, W., Lin, Z.-J. & Tong, M.-L. (2009). CrystEngComm, 11, 967–971.
  7. Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [DOI] [PMC free article] [PubMed]
  8. Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wermester, N., Aubin, E., Pauchet, M., Coste, S. & Coquerel, G. (2007). Tetrahedron Asymmetry, 18, 821–831.
  13. Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030281/dn2478sup1.cif

e-65-m1045-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030281/dn2478Isup2.hkl

e-65-m1045-Isup2.hkl (113.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES