Abstract
The title compound, C9H9BrO2, prepared by the reaction of 4-methoxyacetophenone and cupric bromide, , is approximately planar (r.m.s. deviation 0.0008 Å). In the crystal, weak intermolecular aromatic C—H⋯Ocarbonyl hydrogen-bonding interactions result in a one-dimensional chain structure.
Related literature
For background to hydrazone compounds, see: Domiano et al. (1984 ▶); Li et al. (1988 ▶); Sadik et al. (2004 ▶). For background to thiazole compounds, see: Shinagawa et al. (1997 ▶); Shivarama et al.(2003 ▶); Dinçer et al. (2005 ▶); Zhang et al. (2009 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C9H9BrO2
M r = 229.06
Monoclinic,
a = 7.7360 (15) Å
b = 12.441 (3) Å
c = 10.048 (2) Å
β = 111.42 (3)°
V = 900.3 (4) Å3
Z = 4
Mo Kα radiation
μ = 4.52 mm−1
T = 305 K
0.20 × 0.10 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.465, T max = 0.661
1634 measured reflections
1634 independent reflections
924 reflections with I > 2σ(I)
3 standard reflections every 200 reflections intensity decay: 9%
Refinement
R[F 2 > 2σ(F 2)] = 0.054
wR(F 2) = 0.116
S = 1.01
1634 reflections
109 parameters
H-atom parameters constrained
Δρmax = 0.35 e Å−3
Δρmin = −0.53 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033303/zs2006sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033303/zs2006Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C7—H7A⋯O1i | 0.93 | 2.58 | 3.505 (7) | 171 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
supplementary crystallographic information
Comment
The chemistry of hydrazones, owing to their coordinating capability, pharmacological activity, antibacterial and antifungal properties, and their use in analytical chemistry as highly selective extractants, has been intensively investigated (Domiano et al., 1984; Li et al., 1988; Sadık et al., 2004). In addition, many thiazole compounds are of considerable importance because of their antibacterial and anti-inflammatory activity (Shinagawa et al., 1997; Shivarama et al., 2003; Dinçer et al., 2005). We have focused our synthetic and structural studies on new derivatives of thiazole-substituted hydrazones (Zhang et al., 2009). We report here the crystal structure of a bromo-substituted methoxyacetophenone, the title compound C9H9BrO2 (I), which is a very important intermediate for the synthesis of thiazole-substituted hydrazones.
In (I), all bond lengths are within normal ranges (Allen et al., 1987). The presence of a strong intramolecular aromatic C8–H···O1carbonyl hydrogen bond (Table 1) forms a pseudo five-membered ring [O1/C2/C3/C8/H8A with an r.m.s. deviation 0.0069 Å], maintaining essential coplanarity of the ketone side chain with the benzene ring (Fig. 1) [torsion angle: C1–C2–C3–C8, -178.0 (5)°]. The methoxy group is similarly essentially coplanar [torsion angle: C5–C6–O2–C9, 172.0 (6)°].
The molecules of (I) associate through weak intermolecular aromatic C—H···Ocarbonyl hydrogen bonds forming one-dimensional chains which extend along the b axial direction in the unit cell (Fig.2).
Experimental
4-Methoxyacetophenone (1.50 g, 0.01 mol) was dissolved in 50 ml ethyl acetate, cupric bromide (3.36 g, 0.015 mol) was added and the mixture was refluxed for ca. 3 h. On cooling, the solid which separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (CDCl3, δ, p.p.m.) 8.17 (d, 2 H), 7.49 (d, 2 H), 4.5 (s, 2 H), 3.81 (s,3 H).
Refinement
All H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene and aromatic H atoms.
Figures
Fig. 1.
A view of the molecular structure of (I) showing the atom-numbering scheme with non-H atoms drawn as 30% displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing of (I) showing hydrogen bonds as dashed lines.
Crystal data
| C9H9BrO2 | F(000) = 456 |
| Mr = 229.06 | Dx = 1.690 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 27 reflections |
| a = 7.7360 (15) Å | θ = 1–25° |
| b = 12.441 (3) Å | µ = 4.52 mm−1 |
| c = 10.048 (2) Å | T = 305 K |
| β = 111.42 (3)° | Block, colorless |
| V = 900.3 (4) Å3 | 0.20 × 0.10 × 0.10 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 924 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.0000 |
| graphite | θmax = 25.3°, θmin = 2.7° |
| ω/2θ scans | h = −9→8 |
| Absorption correction: ψ scan (North et al., 1968) | k = 0→14 |
| Tmin = 0.465, Tmax = 0.661 | l = 0→12 |
| 1634 measured reflections | 3 standard reflections every 200 reflections |
| 1634 independent reflections | intensity decay: 9% |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.116 | H-atom parameters constrained |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3 |
| 1634 reflections | (Δ/σ)max = 0.001 |
| 109 parameters | Δρmax = 0.35 e Å−3 |
| 0 restraints | Δρmin = −0.53 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br | 0.20597 (10) | 0.66539 (6) | 0.07859 (7) | 0.0717 (3) | |
| O1 | 0.3621 (7) | 0.8754 (4) | 0.2083 (5) | 0.0848 (15) | |
| C1 | 0.1809 (8) | 0.8016 (5) | −0.0164 (6) | 0.0576 (17) | |
| H1A | 0.2308 | 0.7957 | −0.0918 | 0.069* | |
| H1B | 0.0500 | 0.8190 | −0.0608 | 0.069* | |
| O2 | 0.2187 (6) | 1.3075 (4) | −0.1487 (5) | 0.0689 (13) | |
| C2 | 0.2781 (8) | 0.8917 (5) | 0.0820 (6) | 0.0534 (16) | |
| C3 | 0.2657 (7) | 0.9994 (5) | 0.0181 (6) | 0.0478 (14) | |
| C4 | 0.1597 (8) | 1.0221 (5) | −0.1242 (6) | 0.0593 (17) | |
| H4A | 0.0957 | 0.9671 | −0.1849 | 0.071* | |
| C5 | 0.1493 (9) | 1.1250 (5) | −0.1751 (7) | 0.0633 (18) | |
| H5A | 0.0780 | 1.1390 | −0.2703 | 0.076* | |
| C6 | 0.2432 (8) | 1.2086 (5) | −0.0870 (7) | 0.0538 (16) | |
| C7 | 0.3497 (8) | 1.1859 (5) | 0.0560 (7) | 0.0600 (17) | |
| H7A | 0.4138 | 1.2406 | 0.1172 | 0.072* | |
| C8 | 0.3586 (8) | 1.0831 (5) | 0.1051 (6) | 0.0564 (16) | |
| H8A | 0.4297 | 1.0688 | 0.2003 | 0.068* | |
| C9 | 0.2906 (10) | 1.3980 (6) | −0.0610 (8) | 0.083 (2) | |
| H9A | 0.2625 | 1.4618 | −0.1186 | 0.124* | |
| H9B | 0.4227 | 1.3908 | −0.0151 | 0.124* | |
| H9C | 0.2353 | 1.4028 | 0.0102 | 0.124* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br | 0.0721 (5) | 0.0588 (5) | 0.0722 (5) | 0.0064 (4) | 0.0121 (3) | 0.0076 (4) |
| O1 | 0.104 (4) | 0.067 (3) | 0.050 (3) | 0.002 (3) | −0.011 (3) | 0.003 (2) |
| C1 | 0.054 (4) | 0.060 (4) | 0.050 (3) | 0.002 (3) | 0.008 (3) | −0.003 (3) |
| O2 | 0.079 (3) | 0.054 (3) | 0.070 (3) | −0.007 (2) | 0.021 (2) | −0.002 (2) |
| C2 | 0.042 (3) | 0.060 (4) | 0.049 (4) | 0.007 (3) | 0.006 (3) | −0.005 (3) |
| C3 | 0.036 (3) | 0.050 (4) | 0.053 (4) | −0.001 (3) | 0.011 (3) | −0.003 (3) |
| C4 | 0.060 (4) | 0.056 (4) | 0.049 (3) | −0.002 (3) | 0.005 (3) | −0.012 (3) |
| C5 | 0.067 (4) | 0.059 (4) | 0.052 (4) | 0.005 (4) | 0.007 (3) | 0.000 (3) |
| C6 | 0.047 (4) | 0.056 (4) | 0.058 (4) | −0.004 (3) | 0.018 (3) | −0.007 (3) |
| C7 | 0.054 (4) | 0.062 (5) | 0.058 (4) | −0.011 (3) | 0.013 (3) | −0.010 (3) |
| C8 | 0.044 (4) | 0.064 (4) | 0.049 (3) | −0.004 (3) | 0.001 (3) | −0.005 (3) |
| C9 | 0.087 (5) | 0.063 (5) | 0.096 (5) | −0.012 (4) | 0.031 (4) | −0.004 (4) |
Geometric parameters (Å, °)
| Br—C1 | 1.920 (6) | C4—H4A | 0.9300 |
| O1—C2 | 1.213 (6) | C5—C6 | 1.387 (8) |
| C1—C2 | 1.502 (8) | C5—H5A | 0.9300 |
| C1—H1A | 0.9700 | C6—C7 | 1.400 (8) |
| C1—H1B | 0.9700 | C7—C8 | 1.363 (8) |
| O2—C6 | 1.359 (7) | C7—H7A | 0.9300 |
| O2—C9 | 1.412 (8) | C8—H8A | 0.9300 |
| C2—C3 | 1.474 (8) | C9—H9A | 0.9600 |
| C3—C8 | 1.380 (7) | C9—H9B | 0.9600 |
| C3—C4 | 1.393 (8) | C9—H9C | 0.9600 |
| C4—C5 | 1.370 (8) | ||
| C2—C1—Br | 113.3 (4) | C4—C5—H5A | 119.4 |
| C2—C1—H1A | 108.9 | C6—C5—H5A | 119.4 |
| Br—C1—H1A | 108.9 | O2—C6—C5 | 115.8 (5) |
| C2—C1—H1B | 108.9 | O2—C6—C7 | 125.6 (6) |
| Br—C1—H1B | 108.9 | C5—C6—C7 | 118.6 (6) |
| H1A—C1—H1B | 107.7 | C8—C7—C6 | 119.6 (6) |
| C6—O2—C9 | 118.7 (5) | C8—C7—H7A | 120.2 |
| O1—C2—C3 | 122.1 (6) | C6—C7—H7A | 120.2 |
| O1—C2—C1 | 120.8 (6) | C7—C8—C3 | 122.2 (6) |
| C3—C2—C1 | 117.0 (5) | C7—C8—H8A | 118.9 |
| C8—C3—C4 | 118.2 (6) | C3—C8—H8A | 118.9 |
| C8—C3—C2 | 118.3 (5) | O2—C9—H9A | 109.5 |
| C4—C3—C2 | 123.4 (6) | O2—C9—H9B | 109.5 |
| C5—C4—C3 | 120.3 (6) | H9A—C9—H9B | 109.5 |
| C5—C4—H4A | 119.9 | O2—C9—H9C | 109.5 |
| C3—C4—H4A | 119.9 | H9A—C9—H9C | 109.5 |
| C4—C5—C6 | 121.2 (6) | H9B—C9—H9C | 109.5 |
| Br—C1—C2—O1 | 0.0 (8) | C9—O2—C6—C5 | 172.0 (6) |
| Br—C1—C2—C3 | −179.8 (4) | C9—O2—C6—C7 | −6.3 (9) |
| O1—C2—C3—C8 | 2.2 (9) | C4—C5—C6—O2 | −178.5 (6) |
| C1—C2—C3—C8 | −178.0 (5) | C4—C5—C6—C7 | 0.0 (9) |
| O1—C2—C3—C4 | −175.3 (6) | O2—C6—C7—C8 | 178.3 (6) |
| C1—C2—C3—C4 | 4.5 (9) | C5—C6—C7—C8 | 0.0 (9) |
| C8—C3—C4—C5 | 0.1 (9) | C6—C7—C8—C3 | 0.0 (9) |
| C2—C3—C4—C5 | 177.6 (6) | C4—C3—C8—C7 | −0.1 (9) |
| C3—C4—C5—C6 | 0.0 (10) | C2—C3—C8—C7 | −177.8 (6) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C8—H8A···O1 | 0.93 | 2.47 | 2.780 (8) | 100 |
| C7—H7A···O1i | 0.93 | 2.58 | 3.505 (7) | 171 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2006).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Dinçer, M., Özdemir, N., Çukurovalı, A. & Yılmaz, İ. (2005). Acta Cryst. E61, o1712-o1714.
- Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- Li, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem.18, 657–665.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889-o891.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shinagawa, H., Yamaga, H., Houchigai, H., Sumita, Y. & Sunagawa, M. (1997). Bioorg. Med. Chem.5, 601–621. [DOI] [PubMed]
- Shivarama, H. B., Malini, K. V., Sooryanarayana, R. B., Sarojini, B. K. & Suchetha, K. N. (2003). Eur. J. Med. Chem.38, 313–318.
- Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033303/zs2006sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033303/zs2006Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


