Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 22;65(Pt 9):o2209. doi: 10.1107/S1600536809032668

Diethyl 2-(2-nitro­benzyl­idene)malonate

S Thenmozhi a, S Ranjith a, A SubbiahPandi a,*, V Dhayalan b, A K MohanaKrishnan b
PMCID: PMC2969968  PMID: 21577610

Abstract

In the title compound, C14H15NO6, the ethoxy­carbonyl groups adopt extended conformations. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of C—H⋯O hydrogen bonds with a R 2 2(20) motif.

Related literature

For biological activity of nitro­gen-containing building blocks derived from α-methyl­ene-β-hydr­oxy esters, see: Singh & Batra (2008); Masson et al. (2007); Basavaiah et al. (2003); Youngme et al. (2007); Ma et al. (2005); Soldatov et al. (2003); Hinckley (1969).graphic file with name e-65-o2209-scheme1.jpg

Experimental

Crystal data

  • C14H15NO6

  • M r = 293.27

  • Triclinic, Inline graphic

  • a = 7.8410 (2) Å

  • b = 8.5571 (2) Å

  • c = 12.3533 (4) Å

  • α = 80.866 (2)°

  • β = 75.037 (1)°

  • γ = 64.402 (1)°

  • V = 721.10 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.982

  • 19570 measured reflections

  • 4226 independent reflections

  • 3259 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.145

  • S = 1.06

  • 4226 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032668/bt5022sup1.cif

e-65-o2209-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032668/bt5022Isup2.hkl

e-65-o2209-Isup2.hkl (202.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.47 3.1683 (18) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

supplementary crystallographic information

Comment

Nitrogen-containing building blocks derived from a-methylene-β-hydroxy esters (Morita-Baylis-Hillman adducts) have been widely employed in modern organic chemistry for the synthesis of natural products and heterocycles of biological relevance (Singh & Batra, 2008; Masson et al., 2007; Basavaiah et al., 2003). β-Diketone as an excellent chelating group has been widely used in supramolecular chemistry. It can form a variety of complexes with various transition-metals (e.g. Cu, Co, Ni, Mn, Pd) or rare-earth metals (e.g. Eu, Sm, La, Gd) (Youngme et al., 2007; Ma et al., 2005). These metal complexes have significant applications in material science or act as chemical shift reagents (Soldatov et al., 2003; Hinckley, 1969). In view of this importance, the crystal structure determination of the title compound (Fig.1) has been carried out.

A perspective view of the title compound with the atom-numbering scheme is shown in Fig. 1. The deviations of the atoms N, O1 and O2 from the least-squares plane of the phenyl rings are -0.080 (1), 0.296 (2) and -0.527 (1) Å. The ethoxycarbonyl groups adopt extended conformation as can be seen from the torsion angles C8- C9- O6- C10 [175.6 (1)°], C9- O6- C10- C11 [-79.9 (2)°], C8- C12- O5- C13[178.6 (1)°] and C12- O5- C13- C14 [178.5 (1)°]. The C2–H2···O3 hydrogen bonds form a cyclic centrosymmetric dimer [R22(20)] shown in Fig.2.

Experimental

A mixture of 2-nitrobenzaldehyde (5 g, 33.11 mmol) in dry xylene (50 ml), ethylene diamine di acetate (1.2 g, 6.66 mmol) and diethyl malonate (6.36 g, 39.7 mmol) were added. The reaction was then refluxed for 12 h, it was then poured over ice - water (100 ml), extracted with CHCl3 (60 ml) and dried (Na2 SO4). The removal of solvent followed by recrystallization from methanol. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in methanol.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C–H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The crystal structure showing the centrosymmetric hydrogen bond motif R22(20). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, -z). The dashed lines indicate the hydrogen bonds.

Crystal data

C14H15NO6 Z = 2
Mr = 293.27 F(000) = 308
Triclinic, P1 Dx = 1.351 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8410 (2) Å Cell parameters from 4226 reflections
b = 8.5571 (2) Å θ = 1.7–30.7°
c = 12.3533 (4) Å µ = 0.11 mm1
α = 80.866 (2)° T = 293 K
β = 75.037 (1)° Block, colourless
γ = 64.402 (1)° 0.21 × 0.19 × 0.17 mm
V = 721.10 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 4226 independent reflections
Radiation source: fine-focus sealed tube 3259 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 30.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→11
Tmin = 0.978, Tmax = 0.982 k = −11→12
19570 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1321P] where P = (Fo2 + 2Fc2)/3
4226 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.32734 (17) 0.26054 (16) 0.00483 (10) 0.0324 (3)
C2 0.4208 (2) 0.18112 (18) −0.09512 (11) 0.0393 (3)
H2 0.3530 0.1563 −0.1367 0.047*
C3 0.6156 (2) 0.1390 (2) −0.13275 (12) 0.0445 (3)
H3 0.6808 0.0854 −0.2002 0.053*
C4 0.7138 (2) 0.1765 (2) −0.07003 (12) 0.0444 (3)
H4 0.8458 0.1469 −0.0951 0.053*
C5 0.61807 (19) 0.25790 (18) 0.02979 (11) 0.0380 (3)
H5 0.6867 0.2834 0.0704 0.046*
C6 0.42104 (17) 0.30233 (16) 0.07069 (10) 0.0307 (2)
C7 0.32275 (18) 0.40052 (17) 0.17243 (11) 0.0335 (3)
H7 0.2096 0.4996 0.1694 0.040*
C8 0.38277 (18) 0.35895 (16) 0.26840 (10) 0.0322 (3)
C9 0.54181 (19) 0.18778 (16) 0.28991 (10) 0.0339 (3)
C10 0.8427 (2) 0.0493 (2) 0.34618 (14) 0.0517 (4)
H10A 0.9576 0.0709 0.3360 0.062*
H10B 0.8725 −0.0413 0.2972 0.062*
C11 0.7894 (3) −0.0099 (2) 0.46438 (15) 0.0570 (4)
H11A 0.7533 0.0818 0.5126 0.086*
H11B 0.8980 −0.1092 0.4840 0.086*
H11C 0.6824 −0.0408 0.4730 0.086*
C12 0.27995 (18) 0.48151 (17) 0.36030 (11) 0.0350 (3)
C13 0.2334 (2) 0.51216 (19) 0.55376 (11) 0.0432 (3)
H13A 0.0935 0.5618 0.5646 0.052*
H13B 0.2752 0.6061 0.5419 0.052*
C14 0.2947 (3) 0.4002 (2) 0.65347 (13) 0.0581 (4)
H14A 0.2440 0.3131 0.6678 0.087*
H14B 0.2462 0.4697 0.7174 0.087*
H14C 0.4334 0.3452 0.6397 0.087*
N 0.12284 (17) 0.29396 (16) 0.04462 (12) 0.0446 (3)
O1 0.03150 (19) 0.3042 (2) −0.02475 (13) 0.0753 (4)
O2 0.05294 (17) 0.30788 (19) 0.14427 (11) 0.0651 (4)
O3 0.53708 (18) 0.05173 (13) 0.28408 (10) 0.0536 (3)
O4 0.17045 (18) 0.63004 (14) 0.34780 (9) 0.0564 (3)
O5 0.32173 (14) 0.40462 (12) 0.45770 (8) 0.0394 (2)
O6 0.68593 (13) 0.20702 (12) 0.31542 (9) 0.0417 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0360 (6) 0.0334 (6) 0.0324 (6) −0.0158 (5) −0.0140 (5) 0.0017 (5)
C2 0.0546 (8) 0.0390 (7) 0.0318 (6) −0.0213 (6) −0.0185 (6) −0.0007 (5)
C3 0.0560 (8) 0.0465 (8) 0.0301 (7) −0.0220 (7) −0.0034 (6) −0.0068 (6)
C4 0.0409 (7) 0.0516 (8) 0.0402 (7) −0.0221 (6) 0.0000 (6) −0.0065 (6)
C5 0.0384 (6) 0.0467 (7) 0.0357 (7) −0.0220 (6) −0.0098 (5) −0.0037 (6)
C6 0.0364 (6) 0.0320 (6) 0.0264 (6) −0.0150 (5) −0.0105 (4) 0.0001 (4)
C7 0.0345 (6) 0.0339 (6) 0.0331 (6) −0.0130 (5) −0.0095 (5) −0.0037 (5)
C8 0.0374 (6) 0.0303 (6) 0.0299 (6) −0.0130 (5) −0.0083 (5) −0.0052 (5)
C9 0.0445 (6) 0.0313 (6) 0.0249 (6) −0.0119 (5) −0.0099 (5) −0.0057 (4)
C10 0.0354 (7) 0.0476 (8) 0.0584 (10) −0.0017 (6) −0.0121 (6) −0.0072 (7)
C11 0.0533 (9) 0.0496 (9) 0.0595 (10) −0.0091 (7) −0.0232 (7) 0.0035 (8)
C12 0.0382 (6) 0.0330 (6) 0.0333 (6) −0.0120 (5) −0.0089 (5) −0.0059 (5)
C13 0.0523 (8) 0.0386 (7) 0.0336 (7) −0.0118 (6) −0.0064 (6) −0.0129 (6)
C14 0.0844 (12) 0.0509 (9) 0.0335 (8) −0.0210 (8) −0.0129 (8) −0.0067 (7)
N 0.0378 (6) 0.0457 (7) 0.0561 (8) −0.0183 (5) −0.0164 (5) −0.0047 (6)
O1 0.0558 (7) 0.1031 (11) 0.0868 (10) −0.0357 (7) −0.0377 (7) −0.0131 (8)
O2 0.0455 (6) 0.0896 (10) 0.0628 (8) −0.0328 (6) 0.0022 (5) −0.0185 (7)
O3 0.0800 (8) 0.0325 (5) 0.0580 (7) −0.0194 (5) −0.0361 (6) −0.0042 (5)
O4 0.0665 (7) 0.0376 (6) 0.0441 (6) 0.0029 (5) −0.0168 (5) −0.0086 (5)
O5 0.0511 (5) 0.0328 (5) 0.0292 (5) −0.0096 (4) −0.0096 (4) −0.0086 (4)
O6 0.0364 (5) 0.0370 (5) 0.0497 (6) −0.0103 (4) −0.0137 (4) −0.0033 (4)

Geometric parameters (Å, °)

C1—C2 1.3756 (19) C10—O6 1.4566 (17)
C1—C6 1.3991 (16) C10—C11 1.482 (2)
C1—N 1.4615 (17) C10—H10A 0.9700
C2—C3 1.375 (2) C10—H10B 0.9700
C2—H2 0.9300 C11—H11A 0.9600
C3—C4 1.377 (2) C11—H11B 0.9600
C3—H3 0.9300 C11—H11C 0.9600
C4—C5 1.383 (2) C12—O4 1.1998 (16)
C4—H4 0.9300 C12—O5 1.3244 (16)
C5—C6 1.3917 (17) C13—O5 1.4512 (16)
C5—H5 0.9300 C13—C14 1.483 (2)
C6—C7 1.4680 (17) C13—H13A 0.9700
C7—C8 1.3278 (17) C13—H13B 0.9700
C7—H7 0.9300 C14—H14A 0.9600
C8—C12 1.4878 (17) C14—H14B 0.9600
C8—C9 1.4967 (17) C14—H14C 0.9600
C9—O3 1.1947 (16) N—O2 1.2132 (18)
C9—O6 1.3283 (16) N—O1 1.2222 (17)
C2—C1—C6 123.07 (12) O6—C10—H10B 109.4
C2—C1—N 117.21 (11) C11—C10—H10B 109.4
C6—C1—N 119.66 (12) H10A—C10—H10B 108.0
C3—C2—C1 119.15 (12) C10—C11—H11A 109.5
C3—C2—H2 120.4 C10—C11—H11B 109.5
C1—C2—H2 120.4 H11A—C11—H11B 109.5
C4—C3—C2 119.66 (13) C10—C11—H11C 109.5
C4—C3—H3 120.2 H11A—C11—H11C 109.5
C2—C3—H3 120.2 H11B—C11—H11C 109.5
C3—C4—C5 120.72 (13) O4—C12—O5 124.51 (12)
C3—C4—H4 119.6 O4—C12—C8 124.15 (12)
C5—C4—H4 119.6 O5—C12—C8 111.33 (10)
C4—C5—C6 121.29 (12) O5—C13—C14 107.61 (12)
C4—C5—H5 119.4 O5—C13—H13A 110.2
C6—C5—H5 119.4 C14—C13—H13A 110.2
C5—C6—C1 116.11 (11) O5—C13—H13B 110.2
C5—C6—C7 119.28 (11) C14—C13—H13B 110.2
C1—C6—C7 124.41 (11) H13A—C13—H13B 108.5
C8—C7—C6 125.13 (11) C13—C14—H14A 109.5
C8—C7—H7 117.4 C13—C14—H14B 109.5
C6—C7—H7 117.4 H14A—C14—H14B 109.5
C7—C8—C12 118.91 (11) C13—C14—H14C 109.5
C7—C8—C9 122.12 (11) H14A—C14—H14C 109.5
C12—C8—C9 118.84 (10) H14B—C14—H14C 109.5
O3—C9—O6 125.05 (12) O2—N—O1 123.34 (13)
O3—C9—C8 123.16 (12) O2—N—C1 118.78 (11)
O6—C9—C8 111.79 (11) O1—N—C1 117.87 (13)
O6—C10—C11 111.16 (12) C12—O5—C13 116.56 (10)
O6—C10—H10A 109.4 C9—O6—C10 116.65 (11)
C11—C10—H10A 109.4
C6—C1—C2—C3 0.5 (2) C7—C8—C9—O6 123.02 (13)
N—C1—C2—C3 −176.61 (12) C12—C8—C9—O6 −61.15 (15)
C1—C2—C3—C4 0.1 (2) C7—C8—C12—O4 −15.0 (2)
C2—C3—C4—C5 −0.7 (2) C9—C8—C12—O4 169.01 (14)
C3—C4—C5—C6 0.8 (2) C7—C8—C12—O5 163.66 (12)
C4—C5—C6—C1 −0.28 (19) C9—C8—C12—O5 −12.30 (16)
C4—C5—C6—C7 −175.29 (12) C2—C1—N—O2 155.65 (14)
C2—C1—C6—C5 −0.36 (19) C6—C1—N—O2 −21.53 (19)
N—C1—C6—C5 176.64 (11) C2—C1—N—O1 −23.42 (19)
C2—C1—C6—C7 174.37 (12) C6—C1—N—O1 159.40 (14)
N—C1—C6—C7 −8.63 (18) O4—C12—O5—C13 −2.7 (2)
C5—C6—C7—C8 −50.59 (19) C8—C12—O5—C13 178.64 (11)
C1—C6—C7—C8 134.84 (14) C14—C13—O5—C12 178.49 (13)
C6—C7—C8—C12 173.32 (11) O3—C9—O6—C10 −4.6 (2)
C6—C7—C8—C9 −10.8 (2) C8—C9—O6—C10 175.61 (11)
C7—C8—C9—O3 −56.78 (19) C11—C10—O6—C9 −79.96 (17)
C12—C8—C9—O3 119.05 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O3i 0.93 2.47 3.1683 (18) 132

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5022).

References

  1. Basavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev.103, 811–891. [DOI] [PubMed]
  2. Bruker (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hinckley, C. C. (1969). J. Am. Chem. Soc.91, 5160–5162. [DOI] [PubMed]
  5. Ma, D.-Z., Wu, Y.-Q. & Zuo, X. (2005). Mater. Lett.59, 3678–3681.
  6. Masson, G., Housseman, C. & Zhu, J. (2007). Angew. Chem. Int. Ed.46, 4614–4628. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Gottingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Singh, V. & Batra, S. (2008). Tetrahedron, 64, 4511–4574.
  10. Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater.15, 3826–3840.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Youngme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun.10, 843–848.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032668/bt5022sup1.cif

e-65-o2209-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032668/bt5022Isup2.hkl

e-65-o2209-Isup2.hkl (202.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES