Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):m1148. doi: 10.1107/S1600536809033662

Tetra­aqua­bis[2-(2,4-dichloro­phen­oxy)acetato]nickel(II)

Wu Chen a, Ji-Wen Yuan a, Lei Lei a, Qing-Fu Zeng a,*
PMCID: PMC2969976  PMID: 21577481

Abstract

In the title complex, [Ni(C8H5Cl2O3)2(H2O)4], the NiII atom (site symmetry Inline graphic) adopts a slightly distorted NiO6 octa­hedral coordination. An intra­molecular O—H⋯O hydrogen bond helps to establish the conformation. In the crystal, further O—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For background, see: Cheng et al. (2006). For reference structural data, see: Allen et al. (1987).graphic file with name e-65-m1148-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H5Cl2O3)2(H2O)4]

  • M r = 570.81

  • Monoclinic, Inline graphic

  • a = 16.860 (3) Å

  • b = 8.1370 (16) Å

  • c = 8.3010 (17) Å

  • β = 95.87 (3)°

  • V = 1132.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.683, T max = 0.875

  • 2134 measured reflections

  • 1976 independent reflections

  • 1596 reflections with I > 2σ(I)

  • R int = 0.017

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.214

  • S = 1.14

  • 1976 reflections

  • 154 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −1.97 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033662/hb5064sup1.cif

e-65-m1148-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033662/hb5064Isup2.hkl

e-65-m1148-Isup2.hkl (97.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O3 2.085 (5)
Ni1—O4 2.126 (4)
Ni1—O1 2.130 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 (5) 2.05 (7) 2.723 (7) 136 (8)
O1—H1B⋯O2 0.84 (3) 1.82 (5) 2.619 (7) 157 (7)
O3—H3A⋯O1i 0.85 (6) 2.44 (7) 3.217 (7) 153 (7)
O3—H3B⋯O6ii 0.846 (16) 2.34 (6) 2.980 (7) 133 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

supplementary crystallographic information

Comment

There has been much research interest in acid metal complexes due to their molecular architectures and biological activities (e.g. Cheng et al., 2006). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The NiII atom is six-coordinated by two O atoms from the 2-(2,4-dichlorophenoxy)acetate and four O atoms from the water molecules, forming a slightly distorted octahedral coordination.

Experimental

A mixture of 2-(2,4-dichlorophenoxy)acetic acid (440 mg, 2 mmol) and NiCl2.6H2O (1 mmol, 236 mg) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, green blocks of (I) were formed.

Refinement

The water H atoms were located in a difference map and their positions were refined with the restraint O—H = 0.83 (1)Å. The other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 30% probability displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1–x, –y, 1–z).

Crystal data

[Ni(C8H5Cl2O3)2(H2O)4] F(000) = 580
Mr = 570.81 Dx = 1.673 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 16.860 (3) Å θ = 9–12°
b = 8.1370 (16) Å µ = 1.38 mm1
c = 8.3010 (17) Å T = 293 K
β = 95.87 (3)° Block, green
V = 1132.8 (4) Å3 0.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer 1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
graphite θmax = 25.2°, θmin = 1.2°
ω/2θ scans h = −20→20
Absorption correction: ψ scan (North et al., 1968) k = −9→0
Tmin = 0.683, Tmax = 0.875 l = 0→9
2134 measured reflections 200 standard reflections every 3 reflections
1976 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1181P)2 + 3.965P] where P = (Fo2 + 2Fc2)/3
1976 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.86 e Å3
6 restraints Δρmin = −1.97 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1103 (4) 0.1141 (9) 0.3299 (9) 0.0487 (17)
H1 0.0872 0.0160 0.3585 0.058*
C2 0.1780 (4) 0.4056 (8) 0.2486 (8) 0.0363 (14)
C3 0.1822 (4) 0.1110 (8) 0.2642 (9) 0.0454 (16)
H3 0.2076 0.0113 0.2504 0.054*
C4 0.0724 (4) 0.2598 (9) 0.3534 (9) 0.0458 (16)
C5 0.1072 (4) 0.4079 (8) 0.3131 (8) 0.0431 (15)
H5 0.0821 0.5072 0.3303 0.052*
C6 0.3693 (4) 0.0240 (7) 0.2247 (7) 0.0296 (12)
C7 0.2173 (4) 0.2580 (7) 0.2183 (8) 0.0345 (13)
C8 0.3201 (4) 0.1188 (8) 0.0942 (7) 0.0388 (15)
H8A 0.3533 0.1447 0.0088 0.047*
H8B 0.2770 0.0489 0.0479 0.047*
Cl1 −0.01949 (12) 0.2621 (3) 0.4316 (3) 0.0626 (6)
Cl2 0.22352 (11) 0.5880 (2) 0.1988 (3) 0.0557 (6)
H1A 0.418 (3) −0.233 (12) 0.523 (6) 0.067*
H3A 0.452 (4) −0.018 (10) 0.785 (6) 0.067*
H1B 0.436 (4) −0.226 (11) 0.366 (3) 0.067*
H3B 0.3858 (7) 0.030 (11) 0.687 (9) 0.067*
Ni1 0.5000 0.0000 0.5000 0.0266 (4)
O1 0.4550 (3) −0.2430 (5) 0.4624 (6) 0.0406 (11)
O2 0.3738 (3) −0.1289 (5) 0.2003 (5) 0.0433 (11)
O3 0.4362 (3) 0.0347 (7) 0.6996 (6) 0.0503 (12)
O4 0.4045 (2) 0.0994 (5) 0.3429 (5) 0.0319 (9)
O6 0.2866 (3) 0.2687 (6) 0.1489 (6) 0.0420 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.053 (4) 0.039 (4) 0.052 (4) −0.005 (3) −0.005 (3) −0.005 (3)
C2 0.038 (3) 0.029 (3) 0.041 (3) −0.008 (3) −0.002 (3) 0.005 (3)
C3 0.048 (4) 0.027 (3) 0.059 (4) −0.002 (3) −0.009 (3) 0.004 (3)
C4 0.049 (4) 0.046 (4) 0.040 (4) −0.006 (3) −0.006 (3) 0.002 (3)
C5 0.049 (4) 0.032 (3) 0.047 (4) 0.000 (3) 0.000 (3) 0.000 (3)
C6 0.039 (3) 0.018 (3) 0.032 (3) 0.001 (2) 0.006 (2) −0.002 (2)
C7 0.037 (3) 0.029 (3) 0.036 (3) 0.004 (2) −0.004 (2) 0.000 (2)
C8 0.046 (4) 0.035 (3) 0.034 (3) 0.006 (3) −0.001 (3) −0.009 (3)
Cl1 0.0543 (11) 0.0675 (13) 0.0680 (13) −0.0061 (9) 0.0147 (9) −0.0037 (10)
Cl2 0.0552 (11) 0.0276 (8) 0.0841 (14) 0.0013 (7) 0.0062 (9) 0.0059 (8)
Ni1 0.0369 (6) 0.0154 (5) 0.0270 (6) 0.0015 (4) 0.0017 (4) 0.0023 (4)
O1 0.058 (3) 0.028 (2) 0.035 (2) 0.000 (2) −0.001 (2) −0.0015 (19)
O2 0.066 (3) 0.031 (2) 0.032 (2) −0.001 (2) −0.003 (2) −0.0056 (18)
O3 0.048 (3) 0.054 (3) 0.050 (3) 0.009 (2) 0.013 (2) 0.007 (2)
O4 0.043 (2) 0.0205 (19) 0.030 (2) 0.0092 (17) −0.0054 (17) −0.0048 (17)
O6 0.037 (2) 0.032 (2) 0.056 (3) 0.0010 (18) −0.002 (2) 0.004 (2)

Geometric parameters (Å, °)

C1—C4 1.369 (10) C7—O6 1.358 (8)
C1—C3 1.381 (11) C8—O6 1.437 (7)
C1—H1 0.9300 C8—H8A 0.9700
C2—C5 1.358 (10) C8—H8B 0.9700
C2—C7 1.407 (9) Ni1—O3 2.085 (5)
C2—Cl2 1.740 (6) Ni1—O3i 2.085 (5)
C3—C7 1.403 (9) Ni1—O4 2.126 (4)
C3—H3 0.9300 Ni1—O4i 2.126 (4)
C4—C5 1.396 (10) Ni1—O1i 2.130 (4)
C4—Cl1 1.741 (8) Ni1—O1 2.130 (4)
C5—H5 0.9300 O1—H1A 0.841 (10)
C6—O4 1.253 (7) O1—H1B 0.840 (10)
C6—O2 1.265 (7) O3—H3A 0.844 (10)
C6—C8 1.508 (8) O3—H3B 0.847 (10)
C4—C1—C3 120.9 (7) C6—C8—H8B 108.7
C4—C1—H1 119.6 H8A—C8—H8B 107.6
C3—C1—H1 119.6 O3—Ni1—O3i 180.0
C5—C2—C7 122.1 (6) O3—Ni1—O4 90.93 (19)
C5—C2—Cl2 120.6 (5) O3i—Ni1—O4 89.07 (18)
C7—C2—Cl2 117.3 (5) O3—Ni1—O4i 89.07 (18)
C1—C3—C7 120.2 (6) O3i—Ni1—O4i 90.93 (18)
C1—C3—H3 119.9 O4—Ni1—O4i 180.0
C7—C3—H3 119.9 O3—Ni1—O1i 87.9 (2)
C1—C4—C5 120.0 (7) O3i—Ni1—O1i 92.1 (2)
C1—C4—Cl1 120.5 (6) O4—Ni1—O1i 88.46 (16)
C5—C4—Cl1 119.5 (6) O4i—Ni1—O1i 91.54 (16)
C2—C5—C4 119.4 (6) O3—Ni1—O1 92.1 (2)
C2—C5—H5 120.3 O3i—Ni1—O1 87.9 (2)
C4—C5—H5 120.3 O4—Ni1—O1 91.54 (16)
O4—C6—O2 125.2 (5) O4i—Ni1—O1 88.46 (16)
O4—C6—C8 119.6 (5) O1i—Ni1—O1 180.0
O2—C6—C8 115.2 (5) Ni1—O1—H1A 96 (7)
O6—C7—C3 125.1 (6) Ni1—O1—H1B 94 (6)
O6—C7—C2 117.5 (5) H1A—O1—H1B 108.9 (18)
C3—C7—C2 117.4 (6) Ni1—O3—H3A 117 (6)
O6—C8—C6 114.4 (5) Ni1—O3—H3B 119 (6)
O6—C8—H8A 108.7 H3A—O3—H3B 108.4 (18)
C6—C8—H8A 108.7 C6—O4—Ni1 124.2 (4)
O6—C8—H8B 108.7 C7—O6—C8 117.5 (5)
C4—C1—C3—C7 −0.9 (11) O4—C6—C8—O6 −28.4 (8)
C3—C1—C4—C5 −1.0 (11) O2—C6—C8—O6 154.2 (6)
C3—C1—C4—Cl1 178.4 (5) O2—C6—O4—Ni1 14.9 (9)
C7—C2—C5—C4 1.0 (10) C8—C6—O4—Ni1 −162.2 (4)
Cl2—C2—C5—C4 −179.3 (5) O3—Ni1—O4—C6 −122.0 (5)
C1—C4—C5—C2 0.9 (10) O3i—Ni1—O4—C6 58.0 (5)
Cl1—C4—C5—C2 −178.5 (5) O4i—Ni1—O4—C6 76 (100)
C1—C3—C7—O6 −178.2 (6) O1i—Ni1—O4—C6 150.1 (5)
C1—C3—C7—C2 2.7 (10) O1—Ni1—O4—C6 −29.9 (5)
C5—C2—C7—O6 178.0 (6) C3—C7—O6—C8 10.6 (9)
Cl2—C2—C7—O6 −1.6 (8) C2—C7—O6—C8 −170.3 (5)
C5—C2—C7—C3 −2.8 (10) C6—C8—O6—C7 −83.3 (7)
Cl2—C2—C7—C3 177.5 (5)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2ii 0.84 (5) 2.05 (7) 2.723 (7) 136 (8)
O1—H1B···O2 0.84 (3) 1.82 (5) 2.619 (7) 157 (7)
O3—H3A···O1ii 0.85 (6) 2.44 (7) 3.217 (7) 153 (7)
O3—H3B···O6iii 0.85 (2) 2.34 (6) 2.980 (7) 133 (8)

Symmetry codes: (ii) x, −y−1/2, z+1/2; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5064).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Cheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem.632, 2326–2330.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033662/hb5064sup1.cif

e-65-m1148-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033662/hb5064Isup2.hkl

e-65-m1148-Isup2.hkl (97.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES