Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 26;65(Pt 9):m1132–m1133. doi: 10.1107/S160053680903325X

catena-Poly[[[diaqua­(nitrato-κ2 O,O′)(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)neodymium(III)]-μ-cyanido-κ2 N:C-[dicyanidoplatinum(II)]-μ-cyanido-κ2 C:N] acetonitrile solvate 2,2′:6′,2′′-terpyridine hemisolvate]

Branson A Maynard a, Philip A Smith a, Richard E Sykora a,*
PMCID: PMC2969978  PMID: 21577470

Abstract

The title compound, {[NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·CH3CN·0.5C15H11N3}n, was isolated from solution as a one-dimensional coordination polymer. The Nd3+ site in the structure has a ninefold coordination with a distorted tricapped trigonal-prismatic geometry, while the PtII ion is coordinated by four cyanide groups in an almost regular square-planar geometry. Cis-bridging by the tetracyanidoplatinate anions links the Nd3+ cations, forming the one-dimensional chains. Additionally, each Nd3+ contains coordin­ation by two water mol­ecules, one tridentate 2,2′:6′,2′′-terpyridine mol­ecule, and one bidentate nitrate anion. 2,2′:6′,2′′-Terpyridine and acetonitrile solvent mol­ecules are incorporated between the chains, the former form π-stacking inter­actions (average inter­planar distance 3.33 Å) with terpyridine mol­ecules located in the chains. Relatively long Pt⋯Pt inter­actions [3.847 (1) Å] are observed in the structure. O—H⋯N and O—H⋯O hydrogen bonding interactions between the consituents consolidates the crystal packing.

Related literature

For related lanthanide tetracyanidoplatinate structures containing 2,2′:6′,2′′-terpyridine, see: Maynard et al. (2008); Maynard, Smith, Ladner et al. (2009); Maynard, Smith, Jaleel et al. (2009). For structural and spectroscopic information on simpler lanthanide tetracyanidoplatinates, see: Gliemann & Yersin (1985); Holzapfel et al. (1981). For luminescence data on lanthanide terpyridine systems, see: Mukkala et al. (1995). graphic file with name e-65-m1132-scheme1.jpg

Experimental

Crystal data

  • [NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N·0.5C15H11N3

  • M r = 932.4

  • Monoclinic, Inline graphic

  • a = 33.231 (6) Å

  • b = 14.3642 (17) Å

  • c = 13.823 (3) Å

  • β = 108.931 (16)°

  • V = 6241.5 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.18 mm−1

  • T = 290 K

  • 0.45 × 0.17 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (XPREP; Bruker, 1998) T min = 0.308, T max = 0.632

  • 5824 measured reflections

  • 5722 independent reflections

  • 4089 reflections with I > 2σ(I)

  • R int = 0.031

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.087

  • S = 1.00

  • 5722 reflections

  • 420 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: CAD-4-PC Software (Enraf–Nonius, 1993); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903325X/nc2153sup1.cif

e-65-m1132-sup1.cif (24.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903325X/nc2153Isup2.hkl

e-65-m1132-Isup2.hkl (280.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N4i 0.85 2.00 2.760 (9) 149.1
O4—H4B⋯N3ii 0.85 2.00 2.814 (10) 160.5
O5—H5B⋯N9iii 0.85 2.16 2.993 (9) 167.4
O5—H5C⋯O1iv 0.85 1.99 2.770 (8) 152.2

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the National Science Foundation for their generous support (NSF-CAREER grant to RES, CHE-0846680).

supplementary crystallographic information

Comment

One of our research goals is to prepare systems where the generally weak Ln3+ emissions are enhanced through the use of sensitizing ligands coordinated directly to Ln3+ cations. Recent efforts in our lab have focused on the novel lanthanide compounds that incorporate two ligand groups simultaneously to achieve this goal. The effort has focused on preparing lanthanide compounds that contain both tetracyanoplatinate(II) anions (TCP) and 2,2':6',2''-terpyridine (tpy) ligands, since each of these ligands have been shown to act as sensitizers for various Ln3+ cations (Gliemann & Yersin, 1985; Mukkala et al., 1995). We recently communicated some of our findings in this area (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009). Through our efforts we have prepared a number of novel compounds incorporating various Ln3+ cations, terpyridine, and TCP anions and have also recently reported on these structures (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009; Maynard, Smith, Jaleel, et al., 2009).

The title compound, (I), is similar to several previously reported compounds in that it contains one-dimensional [Nd(C15H11N3)(H2O)2(NO3)(Pt(CN)4)] chains reminiscent of those found in Ln(C15H11N3)(H2O)2(NO3)[Pt(CN)4].CH3CN (Ln = Eu (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009) or Ln = Ho (Maynard, Smith, Jaleel, et al., 2009)) and Yb(C15H11N3)(H2O)2(NO3)[Pt(CN)4].0.5CH3CN.1.5H2O (Maynard, Smith, Jaleel, et al., 2009). The major structural differences between these related structure types can be attributed in part to the crystallization of various solvent or guest molecules between the one-dimensional chains.

The neutral, one-dimensional [Nd(C15H11N3)(H2O)2(NO3)(Pt(CN)4)] chains in the structure of (I) are illustrated in Figure 1 and a thermal ellipsoid plot of the asymmetric unit is illustrated in Figure 2. The chains are formed by the linkage of the Nd3+ cations by cis-bridging tetracyanoplatinate anions. The coordination of the Nd site is ninefold and can be described as a distorted [NdO4N5] tri-capped trigonal prism. The five nitrogen atoms in the inner sphere of the Nd3+ cations result from the coordination of one tridentate terpyridine ligand and two N-bound TCP anions while the four oxygen atoms are a result of one bidentate nitrate anion and two coordinated water molecules. The two longest Nd—O bond distances for each compound are those to the nitrate anion. The Nd—N bonds to the cyano groups are shorter by an average of ~0.08 Å than the Nd—N bonds to the tpy molecule. The Pt—C distances have an average of 1.984 (8) Å.

The packing diagram of (I) viewed along the c axis is shown in Figure 3. The predominant inter-chain feature is the existence of Pt—Pt interactions. These interactions in (I) are quite long (3.847 (1) Å), but are otherwise reminiscent of those observed in earlier reported lanthanide TCP compounds in that they form dimeric groups (Maynard, Smith, Ladner et al., 2009; Maynard, Smith, Jaleel, et al., 2009). This is in contrast to many reported lanthanide TCP compounds where there exist pseudo-1-D columnar stacks (Gliemann & Yersin, 1985; Holzapfel et al., 1981) containing planar TCP anions parallel to one another. Additional features found in the packing diagram for (I) include porous channels along the c axis that contain acetonitrile solvate molecules, numerous inter-chain hydrogen bonding interactions, and also the presence of π-stacking interactions. These latter interactions (3.33 Å average distance between planes) are between the coordinated tpy and the guest tpy molecule that is co-crystallized between the one-dimensional chains. Also worth noting is the orientation of the coordinated tpy molecules in the one-dimensional chains; viewing along the c axis reveals that these molecules are located on either side of the chains. A similar situation also occurs in Eu(C15H11N3)(H2O)2(NO3)[Pt(CN)4].CH3CN (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009) while Yb(C15H11N3)(H2O)2(NO3)[Pt(CN)4].0.5CH3CN.1.5H2O (Maynard, Smith, Jaleel, et al., 2009) contains one-dimensional chains where all of the terpyridine molecules reside on a single side of the chain.

Experimental

The title compound was synthesized by reacting Nd(NO3).6H2O (Strem, 99.9%), K2Pt(CN)4.3H2O (Alfa Aesar, 99.9%), and 2,2':6',2''-terpyridine (Aldrich, 98%) in a 1:1:1 molar ratio. The reaction proceeded by adding 1 ml of a 0.10 M solution of potassium tetracyanoplatinate in 20%:80% water:acetonitrile mixture to 1 ml of a 0.10 M solution of neodymium nitrate in acetonitrile. Next, 1 ml of a 0.10 M solution of 2,2':6',2''-terpyridine in acetonitrile was layered on the former mixture. Purple crystals were harvested from the reaction tube after several days.

Refinement

Hydrogen atoms on the terpyridine rings and acetonitrile molecule were placed in calculated positions (the acetonitrile H atoms were allowed to rotate but not to tip) and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the former and Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the latter. H-atoms contained in the water molecules were initially located in the difference map and then constrained to have O—H distances of 0.85 Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

A representation of the one-dimensional chains that extend along the c axis in (I).

Fig. 2.

Fig. 2.

A thermal ellipsoid plot of (I) with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level. H-atoms are shown as spheres of arbitrary size. Symmetry codes: (i) x, -y + 1, z - 1/2; (ii) -x + 1, y, -z + 1/2.

Fig. 3.

Fig. 3.

A packing diagram for (I) viewed along the c axis, the direction parallel to the 1-D chains. Pt—Pt and hydrogen-bonding interactions are shown by the dashed lines and one of the 1-D chains is circled for clarity.

Crystal data

[NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N·0.5C15H11N3 F(000) = 3568
Mr = 932.4 Dx = 1.985 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 33.231 (6) Å θ = 8.5–15.4°
b = 14.3642 (17) Å µ = 6.18 mm1
c = 13.823 (3) Å T = 290 K
β = 108.931 (16)° Plate, purple
V = 6241.5 (19) Å3 0.45 × 0.17 × 0.08 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer 4089 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
graphite θmax = 25.4°, θmin = 2.1°
θ/2θ scans h = 0→40
Absorption correction: analytical (SADABS; Bruker, 1998) k = 0→17
Tmin = 0.308, Tmax = 0.632 l = −16→15
5824 measured reflections 3 standard reflections every 120 min
5722 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.087 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0283P)2] where P = (Fo2 + 2Fc2)/3
5722 reflections (Δ/σ)max = 0.001
420 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.84 e Å3
44 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Nd1 0.349783 (14) 0.43585 (3) −0.06095 (3) 0.02261 (11)
Pt1 0.308541 (10) 0.775186 (19) 0.07657 (2) 0.02355 (9)
C1 0.3149 (3) 0.6590 (6) 0.0072 (6) 0.0287 (18)
C2 0.3302 (3) 0.7125 (5) 0.2122 (6) 0.0277 (17)
C3 0.3023 (3) 0.8936 (6) 0.1443 (6) 0.0330 (19)
C4 0.2851 (3) 0.8356 (5) −0.0596 (6) 0.0302 (18)
C5 0.2743 (3) 0.4274 (6) 0.0670 (7) 0.039 (2)
H5A 0.2704 0.4877 0.0410 0.046*
C6 0.2505 (3) 0.3991 (6) 0.1269 (7) 0.044 (2)
H6A 0.2307 0.4391 0.1391 0.053*
C7 0.2562 (3) 0.3117 (7) 0.1679 (7) 0.052 (3)
H7A 0.2411 0.2918 0.2102 0.062*
C8 0.2849 (3) 0.2537 (7) 0.1451 (7) 0.042 (2)
H8A 0.2891 0.1934 0.1709 0.051*
C9 0.3075 (3) 0.2860 (5) 0.0832 (6) 0.0329 (19)
C10 0.3394 (3) 0.2280 (6) 0.0592 (6) 0.035 (2)
C11 0.3405 (3) 0.1306 (7) 0.0718 (7) 0.050 (3)
H11A 0.3202 0.1003 0.0936 0.060*
C12 0.3719 (4) 0.0820 (7) 0.0512 (9) 0.068 (3)
H12A 0.3729 0.0176 0.0582 0.082*
C13 0.4015 (4) 0.1255 (7) 0.0211 (8) 0.057 (3)
H13A 0.4231 0.0914 0.0087 0.069*
C14 0.4000 (3) 0.2214 (6) 0.0084 (7) 0.039 (2)
C15 0.4318 (3) 0.2724 (6) −0.0214 (6) 0.035 (2)
C16 0.4697 (3) 0.2336 (8) −0.0204 (8) 0.056 (3)
H16A 0.4750 0.1711 −0.0036 0.067*
C17 0.4999 (3) 0.2866 (10) −0.0443 (9) 0.069 (4)
H17A 0.5255 0.2604 −0.0442 0.083*
C18 0.4915 (3) 0.3766 (9) −0.0677 (7) 0.058 (3)
H18A 0.5112 0.4140 −0.0841 0.069*
C19 0.4530 (3) 0.4133 (7) −0.0669 (7) 0.045 (2)
H19A 0.4472 0.4757 −0.0837 0.054*
C20 0.5895 (4) 0.0801 (8) 0.1679 (10) 0.073 (4)
H20A 0.5883 0.0154 0.1653 0.088*
C21 0.6217 (3) 0.1261 (8) 0.1448 (8) 0.060 (3)
H21A 0.6423 0.0937 0.1265 0.072*
C22 0.6220 (3) 0.2221 (8) 0.1500 (8) 0.055 (3)
H22A 0.6435 0.2536 0.1340 0.066*
C23 0.5593 (3) 0.1288 (7) 0.1946 (8) 0.056 (3)
H23A 0.5373 0.0984 0.2094 0.068*
C24 0.5627 (3) 0.2254 (6) 0.1988 (6) 0.039 (2)
C25 0.5303 (3) 0.2810 (6) 0.2270 (6) 0.038 (2)
C26 0.5314 (3) 0.3784 (7) 0.2262 (7) 0.048 (2)
H26A 0.5527 0.4102 0.2100 0.058*
C27 0.5000 0.4252 (10) 0.2500 0.053 (4)
H27A 0.5000 0.4899 0.2500 0.063*
C28 0.4505 (6) 0.8941 (11) 0.1457 (17) 0.109 (7)
C29 0.4263 (8) 0.8338 (13) 0.1910 (18) 0.134 (7)
H29A 0.3967 0.8499 0.1644 0.4 (2)*
H29B 0.4362 0.8416 0.2639 0.12 (7)*
H29C 0.4300 0.7701 0.1745 0.09 (4)*
N1 0.3189 (2) 0.5906 (5) −0.0313 (5) 0.0376 (17)
N2 0.3413 (2) 0.6737 (5) 0.2886 (5) 0.0378 (18)
N3 0.2968 (3) 0.9628 (5) 0.1791 (7) 0.055 (2)
N4 0.2716 (3) 0.8690 (5) −0.1384 (6) 0.046 (2)
N5 0.4061 (2) 0.5440 (5) 0.1161 (5) 0.0326 (16)
N6 0.3027 (2) 0.3734 (5) 0.0445 (5) 0.0327 (16)
N7 0.3677 (2) 0.2706 (4) 0.0232 (5) 0.0304 (15)
N8 0.4242 (2) 0.3633 (5) −0.0434 (5) 0.0358 (17)
N9 0.5936 (2) 0.2724 (5) 0.1765 (6) 0.0447 (19)
N10 0.5000 0.2344 (7) 0.2500 0.039 (2)
N11 0.4708 (5) 0.9406 (10) 0.1179 (14) 0.130 (6)
O1 0.38212 (18) 0.4789 (4) 0.1277 (4) 0.0366 (14)
O2 0.40884 (19) 0.5548 (4) 0.0286 (4) 0.0418 (15)
O3 0.4259 (2) 0.5928 (5) 0.1889 (5) 0.058 (2)
O4 0.27728 (18) 0.4401 (4) −0.1750 (4) 0.0374 (14)
H4A 0.2716 0.4145 −0.2333 0.045*
H4B 0.2556 0.4753 −0.1890 0.045*
O5 0.3686 (2) 0.5374 (4) −0.1855 (4) 0.0402 (15)
H5B 0.3769 0.5937 −0.1773 0.048*
H5C 0.3765 0.5152 −0.2334 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Nd1 0.0283 (2) 0.0236 (2) 0.0168 (2) −0.00194 (17) 0.00833 (17) −0.00252 (16)
Pt1 0.03025 (17) 0.02168 (15) 0.02051 (15) 0.00316 (14) 0.01069 (12) 0.00322 (12)
C1 0.032 (5) 0.031 (4) 0.027 (4) 0.000 (4) 0.015 (4) 0.007 (4)
C2 0.037 (5) 0.024 (4) 0.025 (4) 0.001 (4) 0.015 (4) −0.001 (3)
C3 0.048 (5) 0.027 (4) 0.027 (4) 0.005 (4) 0.017 (4) 0.005 (4)
C4 0.036 (5) 0.030 (4) 0.027 (4) 0.005 (4) 0.013 (4) 0.004 (4)
C5 0.037 (5) 0.033 (5) 0.047 (5) −0.003 (4) 0.016 (4) −0.001 (4)
C6 0.045 (6) 0.048 (5) 0.047 (5) −0.017 (5) 0.026 (5) −0.010 (5)
C7 0.055 (7) 0.071 (7) 0.035 (5) −0.016 (6) 0.021 (5) 0.010 (5)
C8 0.036 (5) 0.051 (5) 0.050 (6) −0.006 (4) 0.027 (5) 0.020 (5)
C9 0.039 (5) 0.034 (4) 0.025 (4) −0.006 (4) 0.009 (4) −0.005 (4)
C10 0.043 (5) 0.038 (5) 0.019 (4) −0.005 (4) 0.004 (4) 0.010 (4)
C11 0.058 (7) 0.043 (6) 0.052 (6) −0.001 (5) 0.021 (5) 0.013 (5)
C12 0.081 (9) 0.029 (5) 0.090 (9) 0.016 (6) 0.021 (7) 0.015 (5)
C13 0.063 (7) 0.045 (6) 0.067 (7) 0.019 (5) 0.025 (6) 0.009 (5)
C14 0.039 (5) 0.041 (5) 0.037 (5) 0.013 (4) 0.012 (4) 0.003 (4)
C15 0.036 (5) 0.048 (5) 0.020 (4) 0.007 (4) 0.007 (4) −0.004 (4)
C16 0.050 (6) 0.065 (7) 0.053 (6) 0.024 (6) 0.019 (5) 0.010 (5)
C17 0.032 (6) 0.116 (11) 0.062 (7) 0.017 (7) 0.018 (5) −0.004 (8)
C18 0.044 (6) 0.095 (9) 0.032 (5) −0.015 (6) 0.012 (5) 0.008 (6)
C19 0.034 (5) 0.064 (6) 0.038 (5) −0.001 (5) 0.015 (4) 0.002 (5)
C20 0.076 (9) 0.050 (6) 0.105 (10) 0.005 (6) 0.047 (8) −0.004 (7)
C21 0.060 (7) 0.068 (7) 0.069 (7) 0.007 (6) 0.045 (6) −0.008 (6)
C22 0.055 (7) 0.071 (7) 0.047 (6) 0.004 (6) 0.026 (5) −0.004 (6)
C23 0.067 (7) 0.041 (5) 0.077 (8) 0.007 (5) 0.046 (6) 0.004 (5)
C24 0.038 (5) 0.050 (5) 0.031 (5) 0.005 (5) 0.014 (4) −0.001 (4)
C25 0.036 (5) 0.057 (6) 0.024 (4) 0.002 (5) 0.014 (4) 0.000 (4)
C26 0.046 (6) 0.050 (6) 0.050 (6) −0.016 (5) 0.018 (5) 0.000 (5)
C27 0.039 (8) 0.042 (8) 0.074 (11) 0.000 0.016 (8) 0.000
C28 0.080 (12) 0.061 (10) 0.17 (2) −0.003 (8) 0.019 (12) −0.024 (11)
C29 0.14 (2) 0.103 (15) 0.16 (2) −0.002 (13) 0.052 (16) −0.022 (13)
N1 0.048 (5) 0.030 (4) 0.038 (4) −0.002 (3) 0.018 (4) −0.003 (3)
N2 0.040 (5) 0.040 (4) 0.031 (4) 0.003 (3) 0.009 (3) 0.008 (3)
N3 0.070 (6) 0.036 (4) 0.070 (6) 0.008 (4) 0.039 (5) −0.004 (4)
N4 0.052 (5) 0.048 (5) 0.036 (4) 0.008 (4) 0.011 (4) 0.007 (4)
N5 0.031 (4) 0.038 (4) 0.028 (4) −0.002 (3) 0.009 (3) −0.004 (3)
N6 0.036 (4) 0.032 (4) 0.029 (4) −0.005 (3) 0.008 (3) −0.001 (3)
N7 0.039 (4) 0.028 (3) 0.022 (3) 0.001 (3) 0.008 (3) 0.008 (3)
N8 0.036 (4) 0.049 (4) 0.024 (4) 0.001 (4) 0.012 (3) 0.001 (3)
N9 0.041 (5) 0.056 (5) 0.043 (4) −0.008 (4) 0.020 (4) −0.008 (4)
N10 0.040 (6) 0.047 (6) 0.031 (5) 0.000 0.012 (5) 0.000
N11 0.122 (14) 0.102 (12) 0.173 (16) 0.015 (10) 0.060 (12) −0.002 (11)
O1 0.043 (4) 0.041 (3) 0.024 (3) −0.005 (3) 0.010 (3) −0.002 (3)
O2 0.046 (4) 0.051 (4) 0.033 (3) −0.018 (3) 0.020 (3) −0.007 (3)
O3 0.055 (5) 0.070 (5) 0.040 (4) −0.015 (4) 0.001 (3) −0.026 (4)
O4 0.032 (3) 0.048 (3) 0.027 (3) 0.007 (3) 0.002 (3) −0.012 (3)
O5 0.063 (4) 0.033 (3) 0.032 (3) −0.006 (3) 0.026 (3) −0.002 (3)

Geometric parameters (Å, °)

Nd1—O4 2.414 (5) C15—C16 1.374 (12)
Nd1—O5 2.486 (5) C16—C17 1.383 (15)
Nd1—N1 2.536 (7) C16—H16A 0.9300
Nd1—N2i 2.550 (7) C17—C18 1.339 (16)
Nd1—O1 2.554 (5) C17—H17A 0.9300
Nd1—O2 2.594 (6) C18—C19 1.389 (14)
Nd1—N6 2.619 (7) C18—H18A 0.9300
Nd1—N8 2.623 (7) C19—N8 1.317 (11)
Nd1—N7 2.625 (6) C19—H19A 0.9300
Nd1—N5 2.989 (7) C20—C23 1.367 (14)
Pt1—C1 1.970 (8) C20—C21 1.380 (14)
Pt1—C3 1.985 (8) C20—H20A 0.9300
Pt1—C4 1.988 (8) C21—C22 1.380 (14)
Pt1—C2 1.992 (8) C21—H21A 0.9300
C1—N1 1.146 (10) C22—N9 1.331 (12)
C2—N2 1.144 (9) C22—H22A 0.9300
C3—N3 1.144 (10) C23—C24 1.392 (12)
C4—N4 1.140 (10) C23—H23A 0.9300
C5—N6 1.334 (11) C24—N9 1.347 (11)
C5—C6 1.379 (12) C24—C25 1.491 (12)
C5—H5A 0.9300 C25—N10 1.329 (10)
C6—C7 1.365 (13) C25—C26 1.400 (12)
C6—H6A 0.9300 C26—C27 1.367 (11)
C7—C8 1.378 (14) C26—H26A 0.9300
C7—H7A 0.9300 C27—C26ii 1.367 (11)
C8—C9 1.388 (11) C27—H27A 0.9300
C8—H8A 0.9300 C28—N11 1.10 (2)
C9—N6 1.355 (10) C28—C29 1.46 (2)
C9—C10 1.469 (12) C29—H29A 0.9600
C10—N7 1.344 (10) C29—H29B 0.9600
C10—C11 1.410 (12) C29—H29C 0.9600
C11—C12 1.360 (14) N2—Nd1iii 2.550 (7)
C11—H11A 0.9300 N5—O3 1.227 (8)
C12—C13 1.340 (15) N5—O2 1.252 (8)
C12—H12A 0.9300 N5—O1 1.273 (8)
C13—C14 1.387 (13) N10—C25ii 1.329 (10)
C13—H13A 0.9300 O4—H4A 0.8500
C14—N7 1.356 (10) O4—H4B 0.8499
C14—C15 1.449 (12) O5—H5B 0.8500
C15—N8 1.344 (11) O5—H5C 0.8499
O4—Nd1—O5 87.4 (2) C12—C13—C14 120.2 (10)
O4—Nd1—N1 73.3 (2) C12—C13—H13A 119.9
O5—Nd1—N1 78.7 (2) C14—C13—H13A 119.9
O4—Nd1—N2i 70.1 (2) N7—C14—C13 119.7 (9)
O5—Nd1—N2i 77.5 (2) N7—C14—C15 117.7 (7)
N1—Nd1—N2i 136.8 (2) C13—C14—C15 122.6 (9)
O4—Nd1—O1 131.37 (19) N8—C15—C16 119.9 (9)
O5—Nd1—O1 116.64 (18) N8—C15—C14 117.1 (8)
N1—Nd1—O1 71.4 (2) C16—C15—C14 122.8 (9)
N2i—Nd1—O1 151.8 (2) C15—C16—C17 120.6 (10)
O4—Nd1—O2 137.3 (2) C15—C16—H16A 119.7
O5—Nd1—O2 67.83 (18) C17—C16—H16A 119.7
N1—Nd1—O2 68.2 (2) C18—C17—C16 118.6 (10)
N2i—Nd1—O2 131.5 (2) C18—C17—H17A 120.7
O1—Nd1—O2 49.51 (17) C16—C17—H17A 120.7
O4—Nd1—N6 73.9 (2) C17—C18—C19 119.0 (10)
O5—Nd1—N6 156.4 (2) C17—C18—H18A 120.5
N1—Nd1—N6 82.2 (2) C19—C18—H18A 120.5
N2i—Nd1—N6 108.3 (2) N8—C19—C18 122.6 (10)
O1—Nd1—N6 69.15 (19) N8—C19—H19A 118.7
O2—Nd1—N6 117.16 (19) C18—C19—H19A 118.7
O4—Nd1—N8 141.46 (19) C23—C20—C21 120.5 (10)
O5—Nd1—N8 81.7 (2) C23—C20—H20A 119.7
N1—Nd1—N8 138.8 (2) C21—C20—H20A 119.7
N2i—Nd1—N8 71.4 (2) C20—C21—C22 117.4 (10)
O1—Nd1—N8 85.98 (19) C20—C21—H21A 121.3
O2—Nd1—N8 70.9 (2) C22—C21—H21A 121.3
N6—Nd1—N8 121.9 (2) N9—C22—C21 124.2 (10)
O4—Nd1—N7 110.3 (2) N9—C22—H22A 117.9
O5—Nd1—N7 140.0 (2) C21—C22—H22A 117.9
N1—Nd1—N7 140.0 (2) C20—C23—C24 117.8 (10)
N2i—Nd1—N7 75.7 (2) C20—C23—H23A 121.1
O1—Nd1—N7 78.85 (18) C24—C23—H23A 121.1
O2—Nd1—N7 110.9 (2) N9—C24—C23 123.1 (9)
N6—Nd1—N7 62.3 (2) N9—C24—C25 117.5 (8)
N8—Nd1—N7 61.8 (2) C23—C24—C25 119.4 (9)
O4—Nd1—N5 138.48 (18) N10—C25—C26 121.9 (9)
O5—Nd1—N5 91.78 (19) N10—C25—C24 117.4 (8)
N1—Nd1—N5 65.9 (2) C26—C25—C24 120.7 (8)
N2i—Nd1—N5 149.6 (2) C27—C26—C25 117.7 (10)
O1—Nd1—N5 24.99 (17) C27—C26—H26A 121.2
O2—Nd1—N5 24.64 (17) C25—C26—H26A 121.2
N6—Nd1—N5 92.92 (19) C26—C27—C26ii 121.2 (13)
N8—Nd1—N5 79.0 (2) C26—C27—H27A 119.4
N7—Nd1—N5 96.63 (19) C26ii—C27—H27A 119.4
C1—Pt1—C3 178.9 (3) N11—C28—C29 175 (3)
C1—Pt1—C4 88.8 (3) C28—C29—H29A 109.5
C3—Pt1—C4 90.2 (3) C28—C29—H29B 109.5
C1—Pt1—C2 90.7 (3) H29A—C29—H29B 109.5
C3—Pt1—C2 90.3 (3) C28—C29—H29C 109.5
C4—Pt1—C2 178.1 (3) H29A—C29—H29C 109.5
N1—C1—Pt1 178.6 (8) H29B—C29—H29C 109.5
N2—C2—Pt1 177.1 (8) C1—N1—Nd1 160.2 (7)
N3—C3—Pt1 176.4 (9) C2—N2—Nd1iii 166.1 (7)
N4—C4—Pt1 179.0 (7) O3—N5—O2 122.3 (7)
N6—C5—C6 123.8 (8) O3—N5—O1 120.4 (7)
N6—C5—H5A 118.1 O2—N5—O1 117.3 (6)
C6—C5—H5A 118.1 O3—N5—Nd1 173.9 (6)
C7—C6—C5 119.4 (10) O2—N5—Nd1 59.7 (4)
C7—C6—H6A 120.3 O1—N5—Nd1 58.0 (3)
C5—C6—H6A 120.3 C5—N6—C9 116.7 (8)
C6—C7—C8 118.4 (9) C5—N6—Nd1 121.8 (5)
C6—C7—H7A 120.8 C9—N6—Nd1 121.5 (6)
C8—C7—H7A 120.8 C10—N7—C14 120.1 (7)
C7—C8—C9 119.4 (9) C10—N7—Nd1 119.4 (5)
C7—C8—H8A 120.3 C14—N7—Nd1 118.8 (5)
C9—C8—H8A 120.3 C19—N8—C15 119.3 (8)
N6—C9—C8 122.4 (8) C19—N8—Nd1 119.8 (6)
N6—C9—C10 116.0 (7) C15—N8—Nd1 120.5 (6)
C8—C9—C10 121.6 (8) C22—N9—C24 116.9 (8)
N7—C10—C11 120.4 (9) C25—N10—C25ii 119.6 (11)
N7—C10—C9 117.9 (7) N5—O1—Nd1 97.0 (4)
C11—C10—C9 121.7 (8) N5—O2—Nd1 95.6 (4)
C12—C11—C10 118.3 (10) Nd1—O4—H4A 118.3
C12—C11—H11A 120.9 Nd1—O4—H4B 139.2
C10—C11—H11A 120.9 H4A—O4—H4B 97.6
C13—C12—C11 121.0 (9) Nd1—O5—H5B 127.5
C13—C12—H12A 119.5 Nd1—O5—H5C 122.0
C11—C12—H12A 119.5 H5B—O5—H5C 107.0

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, y, −z+1/2; (iii) x, −y+1, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···N4iv 0.85 2.00 2.760 (9) 149.1
O4—H4B···N3v 0.85 2.00 2.814 (10) 160.5
O5—H5B···N9vi 0.85 2.16 2.993 (9) 167.4
O5—H5C···O1i 0.85 1.99 2.770 (8) 152.2

Symmetry codes: (iv) −x+1/2, y−1/2, −z−1/2; (v) −x+1/2, −y+3/2, −z; (vi) −x+1, −y+1, −z; (i) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2153).

References

  1. Bruker (1998). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Enraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.
  3. Gliemann, G. & Yersin, H. (1985). Struct. Bond.62 87–153.
  4. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  5. Holzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr.157, 47–67.
  6. Maynard, B. A., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. E. (2008). Inorg. Chem.47, 1895–1897. [DOI] [PubMed]
  7. Maynard, B. A., Smith, P. A., Jaleel, A., Ladner, L. & Sykora, R. E. (2009). J. Solid State Chem. Submitted.
  8. Maynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem.48, 6425–6435. [DOI] [PubMed]
  9. Mukkala, V.-M., Takalo, H., Liitti, P. & Hemmilä, I. (1995). J. Alloys Compd, 225 507–510.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903325X/nc2153sup1.cif

e-65-m1132-sup1.cif (24.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903325X/nc2153Isup2.hkl

e-65-m1132-Isup2.hkl (280.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES