Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2081. doi: 10.1107/S1600536809030207

2,2′-Bipyridine-5,5′-dicarboxylic acid

Chongchen Wang a,*
PMCID: PMC2969984  PMID: 21577499

Abstract

The title mol­ecule, C12H8N2O4, lies on an inversion center. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect mol­ecules into one-dimensional chains along [1Inline graphic1].

Related literature

For synthetic applications of the title compound, see: Schokecht & Kempe (2004). graphic file with name e-65-o2081-scheme1.jpg

Experimental

Crystal data

  • C12H8N2O4

  • M r = 244.20

  • Triclinic, Inline graphic

  • a = 3.7384 (5) Å

  • b = 6.3934 (8) Å

  • c = 10.7786 (13) Å

  • α = 98.774 (2)°

  • β = 92.567 (1)°

  • γ = 90.000 (1)°

  • V = 254.34 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.15 × 0.11 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.982, T max = 0.990

  • 1343 measured reflections

  • 893 independent reflections

  • 657 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.214

  • S = 1.14

  • 893 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030207/lh2868sup1.cif

e-65-o2081-sup1.cif (13.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030207/lh2868Isup2.hkl

e-65-o2081-Isup2.hkl (44.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.625 (3) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality and the Research Fund of Beijing University of Civil Engineering and Architecture..

supplementary crystallographic information

Comment

2,2'-bipyridine-5,5'-dicarboxylate acid is a potential multi-dentate ligand with a versatile coordination mode, which has been used in self-assembled porous coordination synthesis (Schokecht & Kempe, 2004). The crystals of the title compound were obtained unintentionally as the harvested product of the hydrothermal reaction of 2,2'-bipyridine-5,5'-dicarboxylate acid, Eu2O3 and 1,10-phenanthroline.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, intermolecular O—H···O hydrogen bonds connect molecules into one-dimensional chains along [1 -1 1] (Fig. 2).

Experimental

Yellow needle-like crystals of the title compound were obtained by hydrothermal reaction of 2,2'-bipyridine-5,5'-dicarboxylate acid (0.04884 g), 1,10-phenanthroline (0.0360 g), Eu2O3 (0.0702 g) and deionized water (15 ml) in a 23 ml teflon-lined reaction vesset at 433 K for 120 h, followed by slow cooling to room temperature.

Refinement

All H atoms were placed in calculated positions and included in a riding-model approximation, with C—H = 0.93 Å, O-H = 0.82Å and Uiso(H)= 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound shown with 30% probabilty ellipsoids [symmetry code: (a) -x, -y+1, -z+1].

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. The one-dimensional hydrogen-bonded chains propagate along [1-11].

Crystal data

C12H8N2O4 Z = 1
Mr = 244.20 F(000) = 126
Triclinic, P1 Dx = 1.594 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.7384 (5) Å Cell parameters from 528 reflections
b = 6.3934 (8) Å θ = 3.2–27.6°
c = 10.7786 (13) Å µ = 0.12 mm1
α = 98.774 (2)° T = 298 K
β = 92.567 (1)° Needle, yellow
γ = 90.000 (1)° 0.15 × 0.11 × 0.08 mm
V = 254.34 (6) Å3

Data collection

Bruker SMART CCD diffractometer 893 independent reflections
Radiation source: fine-focus sealed tube 657 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −4→4
Tmin = 0.982, Tmax = 0.990 k = −7→7
1343 measured reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1116P)2 + 0.1159P] where P = (Fo2 + 2Fc2)/3
893 reflections (Δ/σ)max < 0.001
82 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1979 (7) 0.2556 (4) 0.5341 (2) 0.0351 (8)
O1 0.5129 (7) −0.0316 (4) 0.8383 (2) 0.0492 (8)
H1 0.5614 −0.0788 0.9036 0.074*
O2 0.2843 (7) 0.2274 (4) 0.9736 (2) 0.0536 (9)
C1 0.3541 (8) 0.1439 (5) 0.8636 (3) 0.0334 (8)
C2 0.2905 (8) 0.1631 (5) 0.6337 (3) 0.0347 (9)
H2 0.3922 0.0293 0.6197 0.042*
C3 0.2438 (7) 0.2552 (5) 0.7571 (3) 0.0307 (9)
C4 0.0964 (8) 0.4566 (5) 0.7784 (3) 0.0353 (9)
H4 0.0640 0.5238 0.8598 0.042*
C5 −0.0008 (8) 0.5548 (5) 0.6768 (3) 0.0332 (8)
H5 −0.1009 0.6892 0.6890 0.040*
C6 0.0520 (8) 0.4512 (5) 0.5562 (3) 0.0295 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0443 (16) 0.0333 (15) 0.0284 (15) 0.0064 (12) −0.0011 (12) 0.0079 (12)
O1 0.0724 (18) 0.0463 (16) 0.0308 (14) 0.0208 (13) −0.0006 (12) 0.0129 (11)
O2 0.083 (2) 0.0525 (17) 0.0267 (14) 0.0231 (14) 0.0056 (12) 0.0108 (11)
C1 0.0347 (17) 0.0366 (18) 0.0297 (17) 0.0043 (14) −0.0014 (13) 0.0088 (14)
C2 0.0390 (18) 0.0339 (18) 0.0329 (18) 0.0076 (14) −0.0009 (13) 0.0108 (14)
C3 0.0309 (16) 0.0350 (19) 0.0271 (18) 0.0003 (14) −0.0020 (13) 0.0083 (14)
C4 0.0446 (19) 0.0375 (19) 0.0240 (16) 0.0068 (15) 0.0024 (13) 0.0047 (13)
C5 0.0393 (18) 0.0321 (17) 0.0296 (17) 0.0078 (14) 0.0009 (13) 0.0092 (14)
C6 0.0288 (15) 0.0318 (18) 0.0289 (17) −0.0009 (13) −0.0021 (12) 0.0088 (14)

Geometric parameters (Å, °)

N1—C2 1.335 (4) C2—H2 0.9300
N1—C6 1.357 (4) C3—C4 1.391 (4)
O1—C1 1.267 (4) C4—C5 1.378 (4)
O1—H1 0.8200 C4—H4 0.9300
O2—C1 1.263 (4) C5—C6 1.388 (4)
C1—C3 1.484 (4) C5—H5 0.9300
C2—C3 1.388 (4) C6—C6i 1.482 (6)
C2—N1—C6 117.4 (3) C4—C3—C1 120.8 (3)
C1—O1—H1 109.5 C5—C4—C3 118.9 (3)
O2—C1—O1 123.7 (3) C5—C4—H4 120.5
O2—C1—C3 118.7 (3) C3—C4—H4 120.5
O1—C1—C3 117.6 (3) C4—C5—C6 119.3 (3)
N1—C2—C3 123.8 (3) C4—C5—H5 120.3
N1—C2—H2 118.1 C6—C5—H5 120.3
C3—C2—H2 118.1 N1—C6—C5 122.4 (3)
C2—C3—C4 118.2 (3) N1—C6—C6i 116.1 (3)
C2—C3—C1 121.0 (3) C5—C6—C6i 121.5 (4)
C6—N1—C2—C3 0.4 (5) C2—C3—C4—C5 0.8 (5)
N1—C2—C3—C4 −0.9 (5) C1—C3—C4—C5 179.7 (3)
N1—C2—C3—C1 −179.8 (3) C3—C4—C5—C6 −0.3 (5)
O2—C1—C3—C2 −175.3 (3) C2—N1—C6—C5 0.2 (5)
O1—C1—C3—C2 4.4 (5) C2—N1—C6—C6i −179.3 (3)
O2—C1—C3—C4 5.9 (5) C4—C5—C6—N1 −0.2 (5)
O1—C1—C3—C4 −174.4 (3) C4—C5—C6—C6i 179.2 (3)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2ii 0.82 1.82 2.625 (3) 168

Symmetry codes: (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2868).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Schokecht, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377-1379.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030207/lh2868sup1.cif

e-65-o2081-sup1.cif (13.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030207/lh2868Isup2.hkl

e-65-o2081-Isup2.hkl (44.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES