Abstract
In the title compound, C12H12O4S, the O atom and the methyl group of the methylsulfinyl substituent are located on opposite sides of the plane of the benzofuran fragment. In the crystal structure, intermolecular C—H⋯O and O—H⋯O hydrogen-bonding interactions are found. The structure also exhibits aromatic π–π interactions between the furan and benzene rings [centroid–centroid distance = 3.841 (5) Å].
Related literature
For the crystal structures of similar alkyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a ▶,b
▶). For the pharmacological properties of benzofuran compounds, see: Howlett et al. (1999 ▶); Twyman & Allsop (1999 ▶). For natural products that contain benzofuran ring systems, see: Akgul & Anil (2003 ▶); von Reuss & König (2004 ▶).
Experimental
Crystal data
C12H12O4S
M r = 252.28
Orthorhombic,
a = 7.767 (1) Å
b = 16.248 (2) Å
c = 18.733 (2) Å
V = 2364.1 (5) Å3
Z = 8
Mo Kα radiation
μ = 0.27 mm−1
T = 293 K
0.40 × 0.20 × 0.05 mm
Data collection
Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000 ▶) T min = 0.899, T max = 0.987
13669 measured reflections
2690 independent reflections
1461 reflections with I > 2σ(I)
R int = 0.110
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.156
S = 1.04
2690 reflections
160 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.35 e Å−3
Δρmin = −0.45 e Å−3
Data collection: SMART (Bruker, 2001 ▶); cell refinement: SAINT (Bruker, 2001 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 1998 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033765/nc2155sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033765/nc2155Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C9—H9B⋯O4i | 0.97 | 2.48 | 3.339 (5) | 148 |
| O2—H2⋯O4ii | 0.85 (6) | 1.74 (6) | 2.590 (4) | 175 (5) |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
Comment
Molecules containing benzofuran skeletons have been received considerable attention in the field of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999) and often occurs as natural products (Akgul & Anil, 2003; von Reuss & König, 2004). As part of our ongoing studies on the synthesis and structure of such compounds the structure of the title compound is reported (Choi et al., 2008a,b).
The benzofuran unit is essentially planar, with a mean deviation of 0.013 (3) Å from the least-squares plane defined by the nine constituent atoms (Fig. 1). In the crystal structure intermolecualr C–H···O and O–H···O hydrogen bonding interactions are found (Fig. 2 and Table 1). The crystal structure is further stabilized by aromatic π···π interactions between the furan and the benzene rings of adjacent molecules, with a Cg1···Cg2iii distance of 3.841 (5) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2-C7 benzene ring, respectively (Fig. 2).
Experimental
Ethyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (303 mg, 1.2 mmol) was added to a solution of potassium hydroxide (337 mg, 6 mmol) in water (15 ml) and methanol (15 ml), and the mixture was refluxed for 5h, then cooled down. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethanol) to afford the title compound as a colorless solid [yield 84%, m.p. 461-462 K; Rf = 0.51 (ethanol)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature.
Refinement
Atom H2 of the hydroxy group was found in a difference Fourier map and refined freely. The other H atoms were positioned with idealized geometry and were refined using a riding model, with C-H = 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms and 1.5Ueq(C) for methyl H atoms.
Figures
Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
Fig. 2.
C–H···O, O–H···O, and π···π interactions (dotted lines) in the structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 2, - y + 1, - z + 1; (ii) x + 1/2, - y + 3/2, - z + 1; (iii) x + 1, y, z; (iv) x - 1/2, - y + 3/2, - z + 1; (v) x - 1, y, z.]
Crystal data
| C12H12O4S | Dx = 1.418 Mg m−3 |
| Mr = 252.28 | Melting point = 461–462 K |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 2314 reflections |
| a = 7.767 (1) Å | θ = 2.7–23.2° |
| b = 16.248 (2) Å | µ = 0.27 mm−1 |
| c = 18.733 (2) Å | T = 293 K |
| V = 2364.1 (5) Å3 | Block, colorless |
| Z = 8 | 0.40 × 0.20 × 0.05 mm |
| F(000) = 1056 |
Data collection
| Bruker SMART CCD diffractometer | 2690 independent reflections |
| Radiation source: fine-focus sealed tube | 1461 reflections with I > 2σ(I) |
| graphite | Rint = 0.110 |
| Detector resolution: 10.0 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
| φ and ω scans | h = −8→10 |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | k = −20→21 |
| Tmin = 0.899, Tmax = 0.987 | l = −24→24 |
| 13669 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.156 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0469P)2 + 5.6706P] where P = (Fo2 + 2Fc2)/3 |
| 2690 reflections | (Δ/σ)max < 0.001 |
| 160 parameters | Δρmax = 0.35 e Å−3 |
| 0 restraints | Δρmin = −0.45 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S | 0.11771 (12) | 0.71553 (6) | 0.38153 (5) | 0.0201 (2) | |
| O1 | 0.2472 (3) | 0.49764 (16) | 0.45410 (13) | 0.0239 (6) | |
| O2 | 0.6841 (4) | 0.67768 (18) | 0.46398 (15) | 0.0285 (7) | |
| H2 | 0.761 (7) | 0.697 (3) | 0.437 (3) | 0.057 (17)* | |
| O3 | 0.5236 (4) | 0.6591 (2) | 0.36700 (15) | 0.0429 (9) | |
| O4 | −0.0703 (3) | 0.73974 (16) | 0.38751 (15) | 0.0304 (7) | |
| C1 | 0.1334 (5) | 0.6112 (2) | 0.40470 (19) | 0.0198 (8) | |
| C2 | 0.0240 (5) | 0.5428 (2) | 0.38493 (19) | 0.0206 (8) | |
| C3 | −0.1287 (5) | 0.5323 (2) | 0.34684 (19) | 0.0232 (8) | |
| H3 | −0.1837 | 0.5773 | 0.3263 | 0.028* | |
| C4 | −0.1973 (5) | 0.4540 (2) | 0.3400 (2) | 0.0262 (9) | |
| C5 | −0.1128 (5) | 0.3867 (2) | 0.3718 (2) | 0.0263 (9) | |
| H5 | −0.1594 | 0.3344 | 0.3664 | 0.032* | |
| C6 | 0.0363 (5) | 0.3956 (2) | 0.4107 (2) | 0.0238 (9) | |
| H6 | 0.0910 | 0.3509 | 0.4317 | 0.029* | |
| C7 | 0.1005 (5) | 0.4747 (2) | 0.41678 (19) | 0.0201 (8) | |
| C8 | 0.2619 (5) | 0.5814 (2) | 0.44641 (18) | 0.0203 (8) | |
| C9 | 0.4120 (5) | 0.6207 (2) | 0.48186 (19) | 0.0228 (9) | |
| H9A | 0.4666 | 0.5806 | 0.5129 | 0.027* | |
| H9B | 0.3713 | 0.6656 | 0.5115 | 0.027* | |
| C10 | 0.5441 (5) | 0.6535 (2) | 0.4304 (2) | 0.0218 (8) | |
| C11 | −0.3638 (6) | 0.4401 (3) | 0.2989 (2) | 0.0419 (12) | |
| H11A | −0.4395 | 0.4860 | 0.3062 | 0.063* | |
| H11B | −0.4183 | 0.3907 | 0.3157 | 0.063* | |
| H11C | −0.3386 | 0.4348 | 0.2490 | 0.063* | |
| C12 | 0.1561 (6) | 0.7075 (3) | 0.2878 (2) | 0.0349 (11) | |
| H12A | 0.0770 | 0.6687 | 0.2674 | 0.052* | |
| H12B | 0.2719 | 0.6891 | 0.2798 | 0.052* | |
| H12C | 0.1400 | 0.7603 | 0.2659 | 0.052* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S | 0.0185 (5) | 0.0201 (4) | 0.0216 (4) | −0.0006 (4) | 0.0017 (4) | 0.0006 (4) |
| O1 | 0.0196 (14) | 0.0243 (14) | 0.0278 (15) | −0.0018 (11) | −0.0061 (12) | 0.0021 (12) |
| O2 | 0.0196 (15) | 0.0405 (18) | 0.0254 (15) | −0.0086 (13) | −0.0019 (13) | 0.0023 (13) |
| O3 | 0.0280 (18) | 0.081 (2) | 0.0198 (15) | −0.0110 (17) | −0.0037 (13) | 0.0048 (15) |
| O4 | 0.0202 (15) | 0.0282 (15) | 0.0429 (17) | 0.0063 (12) | 0.0086 (13) | 0.0054 (13) |
| C1 | 0.020 (2) | 0.0197 (19) | 0.0195 (18) | −0.0005 (16) | 0.0013 (16) | −0.0011 (15) |
| C2 | 0.022 (2) | 0.024 (2) | 0.0159 (18) | 0.0014 (16) | 0.0032 (16) | −0.0024 (16) |
| C3 | 0.023 (2) | 0.025 (2) | 0.0217 (19) | 0.0007 (18) | −0.0037 (17) | 0.0020 (16) |
| C4 | 0.024 (2) | 0.035 (2) | 0.0197 (19) | −0.0046 (19) | −0.0036 (17) | −0.0004 (18) |
| C5 | 0.033 (2) | 0.0207 (19) | 0.025 (2) | −0.0072 (19) | 0.0007 (19) | −0.0001 (16) |
| C6 | 0.024 (2) | 0.021 (2) | 0.026 (2) | 0.0005 (17) | −0.0034 (18) | 0.0047 (16) |
| C7 | 0.018 (2) | 0.025 (2) | 0.0181 (18) | 0.0005 (17) | −0.0005 (16) | −0.0006 (15) |
| C8 | 0.020 (2) | 0.025 (2) | 0.0169 (18) | −0.0017 (16) | 0.0018 (16) | −0.0024 (16) |
| C9 | 0.021 (2) | 0.028 (2) | 0.0186 (18) | −0.0006 (17) | −0.0023 (16) | −0.0018 (16) |
| C10 | 0.0144 (19) | 0.029 (2) | 0.0215 (19) | 0.0023 (17) | −0.0009 (16) | −0.0048 (16) |
| C11 | 0.037 (3) | 0.045 (3) | 0.044 (3) | −0.013 (2) | −0.019 (2) | 0.010 (2) |
| C12 | 0.034 (3) | 0.046 (3) | 0.025 (2) | 0.006 (2) | 0.0006 (18) | 0.005 (2) |
Geometric parameters (Å, °)
| S—O4 | 1.516 (3) | C4—C11 | 1.522 (6) |
| S—C1 | 1.754 (4) | C5—C6 | 1.375 (6) |
| S—C12 | 1.786 (4) | C5—H5 | 0.9300 |
| O1—C8 | 1.374 (4) | C6—C7 | 1.383 (5) |
| O1—C7 | 1.388 (4) | C6—H6 | 0.9300 |
| O2—C10 | 1.316 (5) | C8—C9 | 1.486 (5) |
| O2—H2 | 0.85 (5) | C9—C10 | 1.506 (5) |
| O3—C10 | 1.202 (4) | C9—H9A | 0.9700 |
| C1—C8 | 1.356 (5) | C9—H9B | 0.9700 |
| C1—C2 | 1.447 (5) | C11—H11A | 0.9600 |
| C2—C7 | 1.390 (5) | C11—H11B | 0.9600 |
| C2—C3 | 1.394 (5) | C11—H11C | 0.9600 |
| C3—C4 | 1.385 (5) | C12—H12A | 0.9600 |
| C3—H3 | 0.9300 | C12—H12B | 0.9600 |
| C4—C5 | 1.408 (5) | C12—H12C | 0.9600 |
| O4—S—C1 | 107.41 (17) | O1—C7—C2 | 110.7 (3) |
| O4—S—C12 | 104.62 (19) | C1—C8—O1 | 110.7 (3) |
| C1—S—C12 | 99.26 (19) | C1—C8—C9 | 133.0 (4) |
| C8—O1—C7 | 106.3 (3) | O1—C8—C9 | 116.3 (3) |
| C10—O2—H2 | 114 (3) | C8—C9—C10 | 113.6 (3) |
| C8—C1—C2 | 107.8 (3) | C8—C9—H9A | 108.8 |
| C8—C1—S | 122.6 (3) | C10—C9—H9A | 108.8 |
| C2—C1—S | 129.7 (3) | C8—C9—H9B | 108.8 |
| C7—C2—C3 | 119.1 (3) | C10—C9—H9B | 108.8 |
| C7—C2—C1 | 104.5 (3) | H9A—C9—H9B | 107.7 |
| C3—C2—C1 | 136.4 (4) | O3—C10—O2 | 124.0 (4) |
| C4—C3—C2 | 119.1 (4) | O3—C10—C9 | 124.7 (4) |
| C4—C3—H3 | 120.4 | O2—C10—C9 | 111.3 (3) |
| C2—C3—H3 | 120.4 | C4—C11—H11A | 109.5 |
| C3—C4—C5 | 119.6 (4) | C4—C11—H11B | 109.5 |
| C3—C4—C11 | 120.7 (4) | H11A—C11—H11B | 109.5 |
| C5—C4—C11 | 119.7 (4) | C4—C11—H11C | 109.5 |
| C6—C5—C4 | 122.3 (4) | H11A—C11—H11C | 109.5 |
| C6—C5—H5 | 118.8 | H11B—C11—H11C | 109.5 |
| C4—C5—H5 | 118.8 | S—C12—H12A | 109.5 |
| C5—C6—C7 | 116.5 (4) | S—C12—H12B | 109.5 |
| C5—C6—H6 | 121.8 | H12A—C12—H12B | 109.5 |
| C7—C6—H6 | 121.8 | S—C12—H12C | 109.5 |
| C6—C7—O1 | 125.9 (3) | H12A—C12—H12C | 109.5 |
| C6—C7—C2 | 123.3 (4) | H12B—C12—H12C | 109.5 |
| O4—S—C1—C8 | −138.0 (3) | C8—O1—C7—C6 | −179.5 (4) |
| C12—S—C1—C8 | 113.4 (3) | C8—O1—C7—C2 | 0.8 (4) |
| O4—S—C1—C2 | 42.9 (4) | C3—C2—C7—C6 | 2.4 (6) |
| C12—S—C1—C2 | −65.7 (4) | C1—C2—C7—C6 | −179.6 (3) |
| C8—C1—C2—C7 | −0.9 (4) | C3—C2—C7—O1 | −177.9 (3) |
| S—C1—C2—C7 | 178.3 (3) | C1—C2—C7—O1 | 0.1 (4) |
| C8—C1—C2—C3 | 176.6 (4) | C2—C1—C8—O1 | 1.5 (4) |
| S—C1—C2—C3 | −4.2 (7) | S—C1—C8—O1 | −177.8 (2) |
| C7—C2—C3—C4 | −1.9 (5) | C2—C1—C8—C9 | 179.3 (4) |
| C1—C2—C3—C4 | −179.1 (4) | S—C1—C8—C9 | 0.0 (6) |
| C2—C3—C4—C5 | 0.4 (6) | C7—O1—C8—C1 | −1.4 (4) |
| C2—C3—C4—C11 | 179.9 (4) | C7—O1—C8—C9 | −179.6 (3) |
| C3—C4—C5—C6 | 0.8 (6) | C1—C8—C9—C10 | −66.5 (5) |
| C11—C4—C5—C6 | −178.8 (4) | O1—C8—C9—C10 | 111.2 (4) |
| C4—C5—C6—C7 | −0.3 (6) | C8—C9—C10—O3 | 10.1 (6) |
| C5—C6—C7—O1 | 179.1 (3) | C8—C9—C10—O2 | −171.7 (3) |
| C5—C6—C7—C2 | −1.2 (6) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C9—H9B···O4i | 0.97 | 2.48 | 3.339 (5) | 148 |
| O2—H2···O4ii | 0.85 (6) | 1.74 (6) | 2.590 (4) | 175 (5) |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2155).
References
- Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
- Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1711. [DOI] [PMC free article] [PubMed]
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2079. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289. [PMC free article] [PubMed]
- Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118. [DOI] [PubMed]
- Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett.40, 9383–9384.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033765/nc2155sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033765/nc2155Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


