Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):o2273. doi: 10.1107/S1600536809033480

N 2-(2-Pyrid­yl)-N 6-(4-pyrid­yl)pyridine-2,6-diamine

Zhi-Min Wang a,*, Bo Shao a
PMCID: PMC2969993  PMID: 21577668

Abstract

In the title compound, C15H13N5, the dihedral angles between the central aromatic ring and and the two peripheral rings are 1.5 (6) and 33.1 (4)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds connect the mol­ecules into a zigzag chain propagating in [100].

Related literature

For a related structure, see: Huang et al. (2004). For background to metal-organic framework complexes with polypyridylamine ligands, see: Peng et al. (2000); Fang et al. (2005).graphic file with name e-65-o2273-scheme1.jpg

Experimental

Crystal data

  • C15H13N5

  • M r = 263.30

  • Orthorhombic, Inline graphic

  • a = 11.4884 (15) Å

  • b = 7.3445 (10) Å

  • c = 30.718 (4) Å

  • V = 2591.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.19 × 0.15 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.984, T max = 0.991

  • 11972 measured reflections

  • 2304 independent reflections

  • 1529 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.187

  • S = 0.82

  • 2304 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033480/hb5059sup1.cif

e-65-o2273-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033480/hb5059Isup2.hkl

e-65-o2273-Isup2.hkl (113.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.86 2.22 3.038 (3) 160
N2—H2A⋯N3ii 0.86 2.35 3.198 (3) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Zhejiang Shuren University for financial support.

supplementary crystallographic information

Comment

Metal-organic frameworks complexes with polypyridylamine ligands, bearing diverse networks and special optical and electromagnetic properties (Peng et al., 2000), have aroused great interest among researchers. Tri-pyridyldiamine ligand usually exhibits donor as well as acceptor properties and can be used as a popular chelating ligand (Fang et al., 2005). The crystals of the title compound were obatined unintentionally as the harvested product of the mild reaction of N2-(pydidin-2-yl)-N6-(pydidin-4-yl)pyridine-2,6-diamine, zinc salt.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, intermoelcular N-H···N hydorgen bonds connect molecules into one-dimensional chain along a axis (Table 1), as shown in Figure 2. The three pyridine rings of the title compound are not coplanar. The dihedral angles between the planes of the central pyridine ring and two peripheral rings are 1.5 (6) and 146.9 (4)° respectively, which is very different from the Cd complex with [2,6-bis(2-pyridylamino)pyridine] [15.6 (5) and 34.1 (3)°] (Huang et al., 2004).

Experimental

N2-(pydidin-2-yl)-N6-(pydidin-4-yl)pyridine-2,6-diamine (0.27 mg,0.1 mmol), Zn(CH3COO)2 (0.43 mg, 0.1 mmol), were added to dry ethanol. The mixture was heated and stirred for six hours under reflux. The resultant was then filtered off to give a pure solution which was treated by diethyl ether in a closed vessel. Two weeks later, colourless blocks of (I) were obtained.

Refinement

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93Å (pyridine ring), N—H = 0.86 Å (amine group), and with Uiso(H) 1.2Ueq(carrier).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) Ellipsoids are drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Partial packing of (I) view showing the formation of a chain through N-H···N hydrogen bonds. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H13N5 F(000) = 1104
Mr = 263.30 Dx = 1.350 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2304 reflections
a = 11.4884 (15) Å θ = 2.2–25.2°
b = 7.3445 (10) Å µ = 0.09 mm1
c = 30.718 (4) Å T = 298 K
V = 2591.9 (6) Å3 Block, colourless
Z = 8 0.19 × 0.15 × 0.11 mm

Data collection

Bruker APEXII CCD diffractometer 2304 independent reflections
Radiation source: fine-focus sealed tube 1529 reflections with I > 2σ(I)
graphite Rint = 0.053
φ and ω scans θmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −13→11
Tmin = 0.984, Tmax = 0.991 k = −8→8
11972 measured reflections l = −34→36

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.158P)2 + 0.03P] where P = (Fo2 + 2Fc2)/3
S = 0.82 (Δ/σ)max < 0.001
2304 reflections Δρmax = 0.23 e Å3
182 parameters Δρmin = −0.15 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.011 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N3 0.09096 (15) 1.0142 (2) 0.36725 (5) 0.0482 (5)
C11 −0.05825 (17) 0.6096 (3) 0.40354 (7) 0.0485 (6)
N5 −0.06267 (16) 0.6024 (3) 0.44682 (6) 0.0573 (6)
N2 0.18582 (17) 1.2747 (2) 0.34296 (6) 0.0586 (6)
H2A 0.2400 1.3509 0.3493 0.070*
C1 0.0235 (2) 1.1978 (3) 0.24144 (7) 0.0544 (6)
H1 −0.0457 1.1441 0.2324 0.065*
C9 0.06292 (18) 0.9532 (3) 0.44324 (7) 0.0520 (6)
H9 0.0349 0.8779 0.4652 0.062*
C6 0.14379 (19) 1.1700 (3) 0.37742 (7) 0.0482 (6)
C5 0.15115 (19) 1.2712 (3) 0.29979 (7) 0.0476 (6)
C4 0.22262 (19) 1.3511 (3) 0.26852 (8) 0.0557 (6)
H4 0.2920 1.4068 0.2766 0.067*
N4 −0.00874 (17) 0.7580 (2) 0.38310 (6) 0.0553 (6)
H4A −0.0140 0.7558 0.3552 0.066*
C2 0.04739 (18) 1.1955 (3) 0.28529 (7) 0.0499 (6)
H2 −0.0049 1.1443 0.3049 0.060*
N1 0.09143 (19) 1.2706 (3) 0.21080 (6) 0.0623 (6)
C7 0.1620 (2) 1.2251 (3) 0.42019 (7) 0.0570 (7)
H7 0.2001 1.3335 0.4266 0.068*
C10 0.04771 (17) 0.9094 (3) 0.39941 (7) 0.0450 (5)
C8 0.1212 (2) 1.1128 (3) 0.45271 (7) 0.0595 (7)
H8 0.1332 1.1451 0.4816 0.071*
C12 −0.1031 (2) 0.4715 (3) 0.37727 (8) 0.0612 (6)
H12 −0.0978 0.4792 0.3471 0.073*
C3 0.1897 (2) 1.3467 (3) 0.22582 (8) 0.0638 (7)
H3 0.2391 1.4007 0.2056 0.077*
C15 −0.1133 (2) 0.4549 (4) 0.46451 (9) 0.0694 (8)
H15 −0.1165 0.4479 0.4947 0.083*
C14 −0.1602 (2) 0.3157 (4) 0.44141 (10) 0.0759 (8)
H14 −0.1947 0.2172 0.4554 0.091*
C13 −0.1552 (2) 0.3242 (4) 0.39659 (10) 0.0737 (8)
H13 −0.1867 0.2313 0.3797 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N3 0.0552 (11) 0.0459 (11) 0.0436 (10) −0.0016 (8) −0.0036 (8) −0.0010 (8)
C11 0.0482 (12) 0.0477 (13) 0.0495 (13) 0.0023 (10) −0.0020 (9) 0.0048 (10)
N5 0.0608 (12) 0.0589 (13) 0.0521 (12) −0.0004 (10) 0.0003 (9) 0.0112 (9)
N2 0.0616 (12) 0.0579 (12) 0.0561 (12) −0.0192 (9) −0.0075 (9) 0.0004 (9)
C1 0.0567 (13) 0.0496 (13) 0.0571 (15) −0.0028 (11) −0.0072 (11) 0.0020 (10)
C9 0.0560 (13) 0.0574 (14) 0.0426 (12) 0.0005 (11) 0.0012 (10) −0.0015 (10)
C6 0.0480 (12) 0.0466 (12) 0.0500 (13) 0.0002 (10) −0.0023 (9) −0.0022 (10)
C5 0.0552 (13) 0.0387 (11) 0.0488 (13) 0.0003 (9) −0.0001 (10) −0.0028 (9)
C4 0.0539 (13) 0.0468 (13) 0.0664 (16) −0.0066 (10) 0.0032 (11) 0.0029 (10)
N4 0.0754 (14) 0.0498 (12) 0.0408 (10) −0.0103 (10) −0.0013 (8) 0.0004 (7)
C2 0.0501 (13) 0.0484 (12) 0.0513 (13) −0.0029 (10) 0.0002 (10) 0.0033 (10)
N1 0.0756 (13) 0.0584 (13) 0.0530 (12) 0.0035 (10) 0.0027 (10) 0.0051 (9)
C7 0.0561 (14) 0.0582 (15) 0.0568 (15) −0.0068 (11) −0.0035 (11) −0.0111 (11)
C10 0.0455 (12) 0.0447 (12) 0.0449 (12) 0.0029 (9) 0.0004 (9) −0.0003 (9)
C8 0.0621 (15) 0.0700 (17) 0.0465 (13) −0.0007 (13) −0.0007 (10) −0.0125 (11)
C12 0.0626 (15) 0.0582 (15) 0.0628 (14) −0.0089 (12) −0.0073 (11) −0.0010 (12)
C3 0.0725 (15) 0.0593 (16) 0.0596 (15) 0.0017 (12) 0.0130 (12) 0.0081 (11)
C15 0.0624 (16) 0.0743 (18) 0.0715 (17) −0.0059 (14) 0.0016 (12) 0.0216 (14)
C14 0.0604 (16) 0.0711 (18) 0.096 (2) −0.0107 (14) −0.0013 (14) 0.0256 (16)
C13 0.0691 (17) 0.0592 (16) 0.093 (2) −0.0180 (13) −0.0082 (15) 0.0030 (14)

Geometric parameters (Å, °)

N3—C6 1.332 (3) C4—C3 1.366 (3)
N3—C10 1.347 (3) C4—H4 0.9300
C11—N5 1.331 (3) N4—C10 1.381 (2)
C11—N4 1.380 (3) N4—H4A 0.8600
C11—C12 1.395 (3) C2—H2 0.9300
N5—C15 1.344 (3) N1—C3 1.341 (3)
N2—C5 1.385 (3) C7—C8 1.378 (3)
N2—C6 1.394 (3) C7—H7 0.9300
N2—H2A 0.8600 C8—H8 0.9300
C1—N1 1.335 (3) C12—C13 1.371 (3)
C1—C2 1.375 (3) C12—H12 0.9300
C1—H1 0.9300 C3—H3 0.9300
C9—C8 1.381 (3) C15—C14 1.356 (4)
C9—C10 1.395 (3) C15—H15 0.9300
C9—H9 0.9300 C14—C13 1.379 (4)
C6—C7 1.390 (3) C14—H14 0.9300
C5—C2 1.388 (3) C13—H13 0.9300
C5—C4 1.393 (3)
C6—N3—C10 119.13 (18) C1—C2—H2 120.6
N5—C11—N4 120.07 (19) C5—C2—H2 120.6
N5—C11—C12 122.3 (2) C1—N1—C3 114.6 (2)
N4—C11—C12 117.6 (2) C8—C7—C6 117.4 (2)
C11—N5—C15 116.9 (2) C8—C7—H7 121.3
C5—N2—C6 128.11 (18) C6—C7—H7 121.3
C5—N2—H2A 115.9 N3—C10—N4 111.54 (17)
C6—N2—H2A 115.9 N3—C10—C9 121.97 (19)
N1—C1—C2 125.4 (2) N4—C10—C9 126.5 (2)
N1—C1—H1 117.3 C7—C8—C9 121.3 (2)
C2—C1—H1 117.3 C7—C8—H8 119.3
C8—C9—C10 117.4 (2) C9—C8—H8 119.3
C8—C9—H9 121.3 C13—C12—C11 119.0 (2)
C10—C9—H9 121.3 C13—C12—H12 120.5
N3—C6—C7 122.7 (2) C11—C12—H12 120.5
N3—C6—N2 116.95 (19) N1—C3—C4 125.0 (2)
C7—C6—N2 120.3 (2) N1—C3—H3 117.5
N2—C5—C2 124.1 (2) C4—C3—H3 117.5
N2—C5—C4 118.9 (2) N5—C15—C14 124.6 (3)
C2—C5—C4 117.0 (2) N5—C15—H15 117.7
C3—C4—C5 119.3 (2) C14—C15—H15 117.7
C3—C4—H4 120.4 C15—C14—C13 118.2 (2)
C5—C4—H4 120.4 C15—C14—H14 120.9
C11—N4—C10 131.6 (2) C13—C14—H14 120.9
C11—N4—H4A 114.2 C12—C13—C14 119.1 (3)
C10—N4—H4A 114.2 C12—C13—H13 120.5
C1—C2—C5 118.7 (2) C14—C13—H13 120.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N1i 0.86 2.22 3.038 (3) 160
N2—H2A···N3ii 0.86 2.35 3.198 (3) 170

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5059).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Fang, X.-N., Li, X.-F. & Zeng, X.-R. (2005). Acta Cryst. E61, m1123–m1125.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Huang, L., Tang, S.-H., Fang, X.-N. & Zeng, X.-R. (2004). Acta Cryst. E60, m1963–m1965.
  6. Peng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Mater.209, 80–83.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033480/hb5059sup1.cif

e-65-o2273-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033480/hb5059Isup2.hkl

e-65-o2273-Isup2.hkl (113.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES