Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):m1040. doi: 10.1107/S1600536809030323

Bis[4-(dimethyl­amino)pyridinium] tetra­bromidobis(4-methyl­phen­yl)stannate(IV)

See Mun Lee a, Kong Mun Lo a,*, Hapipah Mohd Ali a, Ward T Robinson a
PMCID: PMC2970024  PMID: 21577403

Abstract

In the title compound, (C7H11N2)2[SnBr4(C7H7)2], the tetra­bromidobis(4-methyl­phen­yl)stannate(IV) anion possesses a centre of inversion located at the SnIV atom. In the crystal structure, two inversion-related cations are linked to the anion via weak N—H⋯Br hydrogen bonds.

Related literature

For related crystal structures, see Lo & Ng (2009); Koon et al. (2009); Yap et al. (2008).graphic file with name e-65-m1040-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)2[SnBr4(C7H7)2]

  • M r = 866.94

  • Monoclinic, Inline graphic

  • a = 10.2178 (3) Å

  • b = 10.4808 (3) Å

  • c = 14.5833 (3) Å

  • β = 95.063 (1)°

  • V = 1555.64 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.98 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.229, T max = 0.353 (expected range = 0.174–0.268)

  • 11555 measured reflections

  • 3569 independent reflections

  • 3225 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.045

  • S = 1.05

  • 3569 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030323/lh2842sup1.cif

e-65-m1040-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030323/lh2842Isup2.hkl

e-65-m1040-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1i 0.88 2.75 3.448 (2) 138
N1—H1⋯Br2i 0.88 2.94 3.517 (2) 125

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of Malaya (grant No. PS072/2007C and PS320/2008C) for supporting this study.

supplementary crystallographic information

Comment

The molecular structure of the title compound is shown in Fig. 1.

Experimental

Tetra(4-methylphenyl)tin (0.49 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.40 g, 1 mmol) were dissolved in absolute ethanol (25 ml) and refluxed for six hours. The solution was filtered and colourless crystals were isolated upon cooling to room temperature.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times U(C,N). N—H was refined and placed in the calculated position of N—H 0.88 ± 0.01 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius and dashed lines indicate hydrogen bonds (symmetry codes: (A) 1+x, -1+y, z and (B) 2-x, -y, -z).

Crystal data

(C7H11N2)2[SnBr4(C7H7)2] F(000) = 844
Mr = 866.94 Dx = 1.851 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6698 reflections
a = 10.2178 (3) Å θ = 2.3–30.5°
b = 10.4808 (3) Å µ = 5.98 mm1
c = 14.5833 (3) Å T = 100 K
β = 95.063 (1)° Block, colourless
V = 1555.64 (7) Å3 0.35 × 0.30 × 0.22 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 3569 independent reflections
Radiation source: fine-focus sealed tube 3225 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→10
Tmin = 0.229, Tmax = 0.353 k = −13→8
11555 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.5727P] where P = (Fo2 + 2Fc2)/3
3569 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 1.0000 0.0000 0.0000 0.01042 (5)
Br1 0.951470 (19) −0.180492 (17) 0.131083 (12) 0.01383 (5)
Br2 1.261950 (18) −0.018292 (18) 0.055861 (14) 0.01597 (6)
N1 0.24150 (18) 0.65685 (17) 0.11335 (13) 0.0237 (4)
H1 0.2028 0.7281 0.1280 0.028*
N2 0.43055 (16) 0.33066 (16) 0.04249 (11) 0.0166 (3)
C1 0.98097 (18) 0.15055 (17) 0.09731 (12) 0.0106 (3)
C2 1.06827 (19) 0.25260 (18) 0.10370 (13) 0.0140 (4)
H2 1.1417 0.2527 0.0680 0.017*
C3 1.04872 (19) 0.35431 (19) 0.16189 (13) 0.0158 (4)
H3 1.1089 0.4236 0.1651 0.019*
C4 0.94235 (19) 0.35675 (19) 0.21573 (13) 0.0148 (4)
C5 0.85693 (19) 0.25278 (19) 0.21028 (13) 0.0142 (4)
H5 0.7847 0.2514 0.2471 0.017*
C6 0.87603 (18) 0.15088 (18) 0.15165 (12) 0.0136 (4)
H6 0.8167 0.0809 0.1488 0.016*
C7 0.9200 (2) 0.46954 (19) 0.27623 (15) 0.0204 (4)
H7A 0.8970 0.5443 0.2377 0.031*
H7B 1.0004 0.4873 0.3160 0.031*
H7C 0.8482 0.4506 0.3144 0.031*
C8 0.2184 (2) 0.6093 (2) 0.02768 (15) 0.0249 (5)
H8 0.1593 0.6526 −0.0157 0.030*
C9 0.2777 (2) 0.5010 (2) 0.00204 (15) 0.0201 (4)
H9 0.2596 0.4687 −0.0586 0.024*
C10 0.36716 (18) 0.43551 (18) 0.06587 (13) 0.0131 (4)
C11 0.3857 (2) 0.48772 (18) 0.15624 (14) 0.0171 (4)
H11 0.4421 0.4461 0.2022 0.021*
C12 0.3229 (2) 0.5969 (2) 0.17697 (14) 0.0202 (4)
H12 0.3367 0.6314 0.2373 0.024*
C13 0.4097 (2) 0.2765 (2) −0.05001 (14) 0.0208 (4)
H13A 0.3200 0.2431 −0.0599 0.031*
H13B 0.4726 0.2072 −0.0565 0.031*
H13C 0.4225 0.3430 −0.0956 0.031*
C14 0.5171 (2) 0.2619 (2) 0.11039 (15) 0.0249 (5)
H14A 0.5837 0.3204 0.1387 0.037*
H14B 0.5603 0.1920 0.0801 0.037*
H14C 0.4653 0.2270 0.1580 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01059 (9) 0.00929 (9) 0.01105 (9) 0.00024 (6) −0.00081 (6) −0.00130 (6)
Br1 0.01585 (10) 0.01282 (10) 0.01285 (9) −0.00079 (7) 0.00140 (7) 0.00179 (7)
Br2 0.01007 (10) 0.01519 (10) 0.02186 (11) 0.00061 (7) −0.00312 (7) −0.00193 (7)
N1 0.0260 (10) 0.0161 (9) 0.0291 (10) 0.0075 (7) 0.0021 (8) 0.0008 (7)
N2 0.0155 (8) 0.0160 (8) 0.0179 (8) 0.0010 (7) −0.0002 (6) 0.0011 (7)
C1 0.0124 (9) 0.0099 (8) 0.0091 (8) 0.0006 (7) −0.0018 (7) −0.0002 (7)
C2 0.0120 (9) 0.0134 (9) 0.0165 (9) −0.0010 (7) 0.0013 (7) −0.0003 (7)
C3 0.0139 (9) 0.0119 (9) 0.0210 (10) −0.0036 (7) −0.0009 (7) −0.0015 (7)
C4 0.0157 (9) 0.0137 (9) 0.0143 (9) 0.0041 (8) −0.0027 (7) −0.0022 (7)
C5 0.0119 (9) 0.0185 (10) 0.0124 (9) 0.0022 (7) 0.0024 (7) 0.0002 (7)
C6 0.0126 (9) 0.0143 (9) 0.0136 (9) −0.0019 (7) −0.0006 (7) 0.0005 (7)
C7 0.0218 (11) 0.0158 (10) 0.0232 (10) 0.0042 (8) 0.0005 (8) −0.0068 (8)
C8 0.0252 (11) 0.0265 (12) 0.0225 (11) 0.0073 (9) −0.0016 (9) 0.0083 (9)
C9 0.0193 (11) 0.0246 (11) 0.0157 (10) 0.0023 (8) −0.0021 (8) 0.0035 (8)
C10 0.0110 (9) 0.0119 (9) 0.0165 (9) −0.0037 (7) 0.0011 (7) 0.0020 (7)
C11 0.0153 (10) 0.0175 (10) 0.0177 (10) −0.0019 (8) −0.0035 (8) 0.0019 (8)
C12 0.0208 (11) 0.0179 (10) 0.0214 (10) −0.0019 (8) −0.0012 (8) −0.0016 (8)
C13 0.0203 (11) 0.0228 (11) 0.0194 (10) −0.0016 (9) 0.0025 (8) −0.0038 (8)
C14 0.0275 (12) 0.0205 (11) 0.0259 (11) 0.0108 (9) −0.0016 (9) 0.0030 (9)

Geometric parameters (Å, °)

Sn1—C1i 2.1424 (18) C5—C6 1.393 (3)
Sn1—C1 2.1424 (18) C5—H5 0.9500
Sn1—Br2i 2.7349 (2) C6—H6 0.9500
Sn1—Br2 2.7349 (2) C7—H7A 0.9800
Sn1—Br1 2.76515 (18) C7—H7B 0.9800
Sn1—Br1i 2.76515 (18) C7—H7C 0.9800
N1—C12 1.346 (3) C8—C9 1.356 (3)
N1—C8 1.346 (3) C8—H8 0.9500
N1—H1 0.8800 C9—C10 1.422 (3)
N2—C10 1.335 (2) C9—H9 0.9500
N2—C14 1.459 (3) C10—C11 1.424 (3)
N2—C13 1.462 (3) C11—C12 1.359 (3)
C1—C6 1.388 (3) C11—H11 0.9500
C1—C2 1.391 (3) C12—H12 0.9500
C2—C3 1.388 (3) C13—H13A 0.9800
C2—H2 0.9500 C13—H13B 0.9800
C3—C4 1.396 (3) C13—H13C 0.9800
C3—H3 0.9500 C14—H14A 0.9800
C4—C5 1.394 (3) C14—H14B 0.9800
C4—C7 1.504 (3) C14—H14C 0.9800
C1i—Sn1—C1 180.00 (13) C1—C6—C5 120.63 (18)
C1i—Sn1—Br2i 89.88 (5) C1—C6—H6 119.7
C1—Sn1—Br2i 90.12 (5) C5—C6—H6 119.7
C1i—Sn1—Br2 90.12 (5) C4—C7—H7A 109.5
C1—Sn1—Br2 89.88 (5) C4—C7—H7B 109.5
Br2i—Sn1—Br2 180.000 (12) H7A—C7—H7B 109.5
C1i—Sn1—Br1 89.22 (5) C4—C7—H7C 109.5
C1—Sn1—Br1 90.78 (5) H7A—C7—H7C 109.5
Br2i—Sn1—Br1 91.340 (6) H7B—C7—H7C 109.5
Br2—Sn1—Br1 88.660 (6) N1—C8—C9 121.3 (2)
C1i—Sn1—Br1i 90.78 (5) N1—C8—H8 119.3
C1—Sn1—Br1i 89.22 (5) C9—C8—H8 119.3
Br2i—Sn1—Br1i 88.660 (6) C8—C9—C10 120.1 (2)
Br2—Sn1—Br1i 91.340 (6) C8—C9—H9 120.0
Br1—Sn1—Br1i 180.000 (10) C10—C9—H9 120.0
C12—N1—C8 120.94 (19) N2—C10—C9 121.88 (18)
C12—N1—H1 119.5 N2—C10—C11 121.65 (18)
C8—N1—H1 119.5 C9—C10—C11 116.47 (18)
C10—N2—C14 120.81 (17) C12—C11—C10 120.16 (19)
C10—N2—C13 121.38 (17) C12—C11—H11 119.9
C14—N2—C13 117.71 (17) C10—C11—H11 119.9
C6—C1—C2 118.88 (17) N1—C12—C11 121.0 (2)
C6—C1—Sn1 119.98 (13) N1—C12—H12 119.5
C2—C1—Sn1 121.04 (13) C11—C12—H12 119.5
C3—C2—C1 120.37 (17) N2—C13—H13A 109.5
C3—C2—H2 119.8 N2—C13—H13B 109.5
C1—C2—H2 119.8 H13A—C13—H13B 109.5
C2—C3—C4 121.28 (18) N2—C13—H13C 109.5
C2—C3—H3 119.4 H13A—C13—H13C 109.5
C4—C3—H3 119.4 H13B—C13—H13C 109.5
C5—C4—C3 117.91 (17) N2—C14—H14A 109.5
C5—C4—C7 121.42 (17) N2—C14—H14B 109.5
C3—C4—C7 120.66 (18) H14A—C14—H14B 109.5
C6—C5—C4 120.90 (17) N2—C14—H14C 109.5
C6—C5—H5 119.5 H14A—C14—H14C 109.5
C4—C5—H5 119.5 H14B—C14—H14C 109.5
C1i—Sn1—C1—C6 0.00 (18) C7—C4—C5—C6 177.77 (18)
Br2i—Sn1—C1—C6 44.67 (14) C2—C1—C6—C5 1.2 (3)
Br2—Sn1—C1—C6 −135.33 (14) Sn1—C1—C6—C5 −175.23 (14)
Br1—Sn1—C1—C6 −46.67 (14) C4—C5—C6—C1 0.1 (3)
Br1i—Sn1—C1—C6 133.33 (14) C12—N1—C8—C9 −1.1 (3)
C1i—Sn1—C1—C2 0.00 (7) N1—C8—C9—C10 −0.4 (3)
Br2i—Sn1—C1—C2 −131.72 (15) C14—N2—C10—C9 −177.10 (19)
Br2—Sn1—C1—C2 48.28 (15) C13—N2—C10—C9 −0.9 (3)
Br1—Sn1—C1—C2 136.94 (15) C14—N2—C10—C11 2.9 (3)
Br1i—Sn1—C1—C2 −43.06 (15) C13—N2—C10—C11 179.12 (18)
C6—C1—C2—C3 −1.5 (3) C8—C9—C10—N2 −178.0 (2)
Sn1—C1—C2—C3 174.92 (14) C8—C9—C10—C11 2.0 (3)
C1—C2—C3—C4 0.5 (3) N2—C10—C11—C12 177.86 (18)
C2—C3—C4—C5 0.9 (3) C9—C10—C11—C12 −2.1 (3)
C2—C3—C4—C7 −178.05 (19) C8—N1—C12—C11 1.0 (3)
C3—C4—C5—C6 −1.1 (3) C10—C11—C12—N1 0.7 (3)

Symmetry codes: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br1ii 0.88 2.75 3.448 (2) 138
N1—H1···Br2ii 0.88 2.94 3.517 (2) 125

Symmetry codes: (ii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2842).

References

  1. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Koon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663. [DOI] [PMC free article] [PubMed]
  3. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m630. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2009). publCIF In preparation.
  7. Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030323/lh2842sup1.cif

e-65-m1040-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030323/lh2842Isup2.hkl

e-65-m1040-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES