Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2097. doi: 10.1107/S1600536809030712

N′-(3,4-Dihydroxy­benzyl­idene)acetohydrazide

Wei-Wei Li a, Lu-Ping Lv a, Wen-Bo Yu a, Yong-Zhao Zhang a, Xian-Chao Hu b,*
PMCID: PMC2970026  PMID: 21577513

Abstract

In the title compound, C9H10N2O3, the Schiff base mol­ecule is approximately planar, the dihedral angle between the benzene ring and the acetohydrazide group (r.m.s. deviation = 0.034 Å) being 8.81 (7)°. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into a three-dimensional network by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li et al. (2008); Tamboura et al. (2009).graphic file with name e-65-o2097-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O3

  • M r = 194.19

  • Monoclinic, Inline graphic

  • a = 10.598 (2) Å

  • b = 8.5017 (16) Å

  • c = 10.621 (2) Å

  • β = 107.232 (7)°

  • V = 913.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.25 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.972, T max = 0.980

  • 5752 measured reflections

  • 2066 independent reflections

  • 1665 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.111

  • S = 0.94

  • 2066 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030712/ci2878sup1.cif

e-65-o2097-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030712/ci2878Isup2.hkl

e-65-o2097-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.17 2.9692 (15) 154
O2—H2A⋯O1ii 0.82 1.96 2.7206 (13) 154
O3—H3⋯O2 0.82 2.26 2.7109 (14) 115
O3—H3⋯O2iii 0.82 2.14 2.7784 (14) 134
C9—H9C⋯O3iv 0.96 2.51 3.445 (2) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

supplementary crystallographic information

Comment

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

In the Schiff base molecule, the acetohydrazide group (O1/N1/N2/C8/C9) is planar (r.m.s. deviation 0.034 Å) and it forms a dihedral angle of 8.81 (7)° with the benzene (C1-C6) ring. The molecule adopts a trans configuration with respect to the C═N bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008). An intramolecular O3—H3···O2 hydrogen bond is observed.

In the crystal, molecules are linked into a three-dimensional network (Fig.2) by O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1).

Experimental

3,4-Dihydroxybenzaldehyde (1.38 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 475–477 K).

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å, O-H = 0.82Å and C-H = 0.93 or 0.96Å) and refined using a riding model, with Uiso(H) =1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H10N2O3 F(000) = 408
Mr = 194.19 Dx = 1.411 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2066 reflections
a = 10.598 (2) Å θ = 2.0–27.4°
b = 8.5017 (16) Å µ = 0.11 mm1
c = 10.621 (2) Å T = 223 K
β = 107.232 (7)° Block, colourless
V = 913.9 (3) Å3 0.25 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2066 independent reflections
Radiation source: fine-focus sealed tube 1665 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 27.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −13→13
Tmin = 0.972, Tmax = 0.980 k = −10→10
5752 measured reflections l = −13→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2108P] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max = 0.009
2066 reflections Δρmax = 0.21 e Å3
129 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.019 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 1.00361 (10) 0.13127 (13) 0.68707 (10) 0.0357 (3)
H2 0.9880 0.0352 0.7029 0.043*
O3 0.47733 (10) 0.25734 (12) 0.01091 (10) 0.0522 (3)
H3 0.4848 0.3492 −0.0093 0.078*
O2 0.64301 (9) 0.48688 (11) 0.14025 (10) 0.0424 (3)
H2A 0.6973 0.5473 0.1870 0.064*
O1 1.13124 (9) 0.34588 (11) 0.75557 (10) 0.0445 (3)
N1 0.93041 (10) 0.20010 (13) 0.56882 (11) 0.0362 (3)
C6 0.75370 (12) 0.15246 (15) 0.36828 (13) 0.0345 (3)
C3 0.56800 (13) 0.22557 (16) 0.12889 (13) 0.0374 (3)
C1 0.74814 (12) 0.30536 (15) 0.31694 (13) 0.0338 (3)
H1 0.8063 0.3821 0.3628 0.041*
C2 0.65615 (12) 0.34155 (15) 0.19818 (12) 0.0333 (3)
C5 0.66449 (13) 0.03947 (16) 0.29930 (14) 0.0397 (3)
H5 0.6673 −0.0617 0.3334 0.048*
C8 1.09751 (12) 0.21065 (15) 0.77666 (13) 0.0336 (3)
C9 1.15560 (15) 0.12587 (18) 0.90450 (13) 0.0440 (3)
H9A 1.1378 0.0153 0.8919 0.066*
H9B 1.1169 0.1653 0.9693 0.066*
H9C 1.2494 0.1427 0.9342 0.066*
C7 0.84748 (13) 0.10590 (15) 0.49377 (13) 0.0359 (3)
H7 0.8468 0.0018 0.5205 0.043*
C4 0.57178 (14) 0.07602 (16) 0.18054 (14) 0.0412 (3)
H4 0.5122 0.0000 0.1357 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0383 (6) 0.0271 (6) 0.0362 (6) −0.0028 (4) 0.0024 (5) 0.0041 (4)
O3 0.0513 (6) 0.0409 (6) 0.0465 (6) −0.0082 (4) −0.0132 (5) 0.0037 (4)
O2 0.0409 (5) 0.0333 (5) 0.0426 (6) −0.0053 (4) −0.0036 (4) 0.0054 (4)
O1 0.0454 (5) 0.0301 (5) 0.0501 (6) −0.0069 (4) 0.0019 (4) 0.0001 (4)
N1 0.0360 (6) 0.0332 (6) 0.0354 (6) 0.0007 (4) 0.0045 (5) 0.0048 (4)
C6 0.0347 (6) 0.0349 (7) 0.0326 (7) −0.0013 (5) 0.0081 (5) 0.0000 (5)
C3 0.0341 (7) 0.0385 (7) 0.0347 (7) −0.0021 (5) 0.0024 (5) −0.0019 (5)
C1 0.0322 (6) 0.0320 (7) 0.0345 (7) −0.0046 (5) 0.0060 (5) −0.0027 (5)
C2 0.0326 (6) 0.0304 (6) 0.0350 (7) −0.0018 (5) 0.0070 (5) −0.0001 (5)
C5 0.0436 (7) 0.0323 (7) 0.0402 (7) −0.0048 (5) 0.0079 (6) 0.0020 (5)
C8 0.0332 (6) 0.0288 (6) 0.0376 (7) 0.0014 (5) 0.0086 (5) −0.0027 (5)
C9 0.0470 (8) 0.0416 (8) 0.0376 (8) 0.0004 (6) 0.0038 (6) 0.0022 (6)
C7 0.0384 (7) 0.0315 (7) 0.0363 (7) −0.0022 (5) 0.0087 (5) 0.0024 (5)
C4 0.0406 (7) 0.0355 (7) 0.0416 (8) −0.0097 (5) 0.0031 (6) −0.0047 (6)

Geometric parameters (Å, °)

N2—C8 1.3380 (16) C3—C4 1.381 (2)
N2—N1 1.3944 (14) C3—C2 1.4069 (18)
N2—H2 0.86 C1—C2 1.3811 (18)
O3—C3 1.3612 (16) C1—H1 0.93
O3—H3 0.82 C5—C4 1.3851 (19)
O2—C2 1.3689 (16) C5—H5 0.93
O2—H2A 0.82 C8—C9 1.4989 (19)
O1—C8 1.2438 (16) C9—H9A 0.96
N1—C7 1.2783 (17) C9—H9B 0.96
C6—C5 1.3939 (18) C9—H9C 0.96
C6—C1 1.4041 (18) C7—H7 0.93
C6—C7 1.4615 (18) C4—H4 0.93
C8—N2—N1 121.80 (11) C4—C5—C6 120.78 (13)
C8—N2—H2 119.1 C4—C5—H5 119.6
N1—N2—H2 119.1 C6—C5—H5 119.6
C3—O3—H3 109.5 O1—C8—N2 122.07 (12)
C2—O2—H2A 109.5 O1—C8—C9 123.01 (12)
C7—N1—N2 113.26 (11) N2—C8—C9 114.90 (12)
C5—C6—C1 119.34 (12) C8—C9—H9A 109.5
C5—C6—C7 117.70 (12) C8—C9—H9B 109.5
C1—C6—C7 122.94 (12) H9A—C9—H9B 109.5
O3—C3—C4 118.55 (12) C8—C9—H9C 109.5
O3—C3—C2 121.38 (12) H9A—C9—H9C 109.5
C4—C3—C2 120.06 (12) H9B—C9—H9C 109.5
C2—C1—C6 119.86 (12) N1—C7—C6 123.72 (12)
C2—C1—H1 120.1 N1—C7—H7 118.1
C6—C1—H1 120.1 C6—C7—H7 118.1
O2—C2—C1 124.19 (11) C3—C4—C5 119.85 (12)
O2—C2—C3 115.73 (11) C3—C4—H4 120.1
C1—C2—C3 120.09 (12) C5—C4—H4 120.1
C8—N2—N1—C7 178.32 (12) C7—C6—C5—C4 179.18 (13)
C5—C6—C1—C2 −0.99 (19) N1—N2—C8—O1 −5.29 (19)
C7—C6—C1—C2 −179.44 (12) N1—N2—C8—C9 173.18 (11)
C6—C1—C2—O2 179.96 (12) N2—N1—C7—C6 176.10 (11)
C6—C1—C2—C3 0.13 (19) C5—C6—C7—N1 −176.99 (13)
O3—C3—C2—O2 0.93 (19) C1—C6—C7—N1 1.5 (2)
C4—C3—C2—O2 −178.75 (12) O3—C3—C4—C5 178.87 (13)
O3—C3—C2—C1 −179.22 (12) C2—C3—C4—C5 −1.4 (2)
C4—C3—C2—C1 1.1 (2) C6—C5—C4—C3 0.6 (2)
C1—C6—C5—C4 0.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.86 2.17 2.9692 (15) 154
O2—H2A···O1ii 0.82 1.96 2.7206 (13) 154
O3—H3···O2 0.82 2.26 2.7109 (14) 115
O3—H3···O2iii 0.82 2.14 2.7784 (14) 134
C9—H9C···O3iv 0.96 2.51 3.445 (2) 166

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2878).

References

  1. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.
  3. Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [DOI] [PMC free article] [PubMed]
  4. Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
  5. Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B. p. 81. New York: Alan R. Liss Inc.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030712/ci2878sup1.cif

e-65-o2097-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030712/ci2878Isup2.hkl

e-65-o2097-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES