Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2095. doi: 10.1107/S1600536809030359

9-{4-[(E)-2-(4,6-Dimethyl-1,3,5-triazin-2-yl)ethen­yl]phen­yl}-9H-carbazole

Chang-Lin Liu a, Gang Xue b, Yue-Zhi Cui a,*, Tian-Duo Li a, Seik Weng Ng c
PMCID: PMC2970030  PMID: 21577511

Abstract

In the crystal structure of the title compound, C25H20N4, the triazinyl ring is nearly coplanar with the planar (r.m.s. deviation = 0.028 Å) phenyl­ethenyl unit, the twist being only 5.8 (2)°; however, the planar carbazolyl unit (r.m.s. deviation = 0.008 Å) is twisted by 47.8 (1)° with respect to the phenyl­ethenyl unit. The nonplanar nature of the mol­ecule explains the phenomenon of light emission at short wavelengths in the solid state but at long wavelengths in solution.

Related literature

For background literature on donor–π-acceptor chromophores, see: Cui et al. (2003, 2004); Kannan et al. (2004); Maury & Bozec (2005); Zhong et al. (2008).graphic file with name e-65-o2095-scheme1.jpg

Experimental

Crystal data

  • C25H20N4

  • M r = 376.45

  • Orthorhombic, Inline graphic

  • a = 8.0415 (8) Å

  • b = 15.716 (2) Å

  • c = 16.098 (1) Å

  • V = 2034.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.42 × 0.28 × 0.16 mm

Data collection

  • Siemens P4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.901, T max = 0.988

  • 2991 measured reflections

  • 2291 independent reflections

  • 1288 reflections with I > 2σ(I)

  • R int = 0.026

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.160

  • S = 1.00

  • 2291 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030359/bt5017sup1.cif

e-65-o2095-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030359/bt5017Isup2.hkl

e-65-o2095-Isup2.hkl (112.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20676074) and the Foundation for Excellent Middle/Young Scientists of Shandong Province (grant No. 2005BS11011).

supplementary crystallographic information

Comment

s-Triazine, which has a conjugated structure is commonly derivatized in the design of chromophores that display specific physical properties (Cui et al., 2003; Maury et al., 2005; Zhong et al., 2008), particularly two-photon absorption (Cui et al., 2004; Kannan et al., 2004). The title compound (Fig. 1, Scheme 1) exemplifies a donor-π-acceptor compound with a carbazolyl donor and an s-triazinyl acceptor. It emits blue light in solid state and yellow-green light in solution. However, this property is unusual as most compounds show a bathochromic shift of fluorescence in solid state relative to their emission in solution.

An intramolecular charge transfer (ICT) axis runs from atom N2 to atom N4. The phenylethenyl unit is almost coplanar with the triazinyl ring. However, the carbazolyl unit is severely twisted with respect to the phenylethenyl and triazinyl units, so that conjugation is poor. Accordingly, such a poorly-conjugated molecule can only emit at a short wavelength (in the solid state) whereas in solution, the molecule is probably freed from strain and can achieve planarity. Consequently, it emits at longer wavelengths. The molecules are packed such that the axes of one half the number molecules are aligned in one direction whereas those of the other half are aligned approximately perpendicular to it (Fig. 2).

Experimental

4-N-Carbazolylbenzaldehyde (2.03 g, 7.5 mmol) in methanol (30 ml) was added to 2,4,6-trimethyl-s-triazine (1.85 g, 15 mmol) and potassium hydroxide (0.5 g) in methanol (50 ml). The mixture was heated for 24 h. The solvent was removed and the residue was purified by column chromatography on silica gel by using benzene/ethanol (10/1) as eluent. Crystals were obtained by recrystallization from a benzene/ethanol solution of the compound.

Refinement

Due to the absence of anomalous scatterers, 1509 Friedel pairs were merged. Hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms, with C–H 0.93–0.96 Å and Uiso(H) set to 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C25H20N4 with displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Anisotropic displacement ellipsoid plot (Barbour, 2001) depicting the alignment of four molecules in the unit cell.

Crystal data

C25H20N4 F(000) = 792
Mr = 376.45 Dx = 1.229 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 40 reflections
a = 8.0415 (8) Å θ = 4.6–12.4°
b = 15.716 (2) Å µ = 0.07 mm1
c = 16.098 (1) Å T = 293 K
V = 2034.4 (3) Å3 Prism, pale green
Z = 4 0.42 × 0.28 × 0.16 mm

Data collection

Siemens P4 four-circle diffractometer 1288 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
graphite θmax = 26.0°, θmin = 1.8°
ω scans h = −1→9
Absorption correction: ψ scan (North et al., 1968) k = −19→1
Tmin = 0.901, Tmax = 0.988 l = −19→1
2991 measured reflections 3 standard reflections every 97 reflections
2291 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0785P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
2291 reflections Δρmax = 0.26 e Å3
265 parameters Δρmin = −0.30 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.063 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3440 (7) 0.5461 (3) 0.7650 (3) 0.0774 (15)
N2 0.2899 (6) 0.4809 (2) 0.6348 (2) 0.0627 (12)
N3 0.4255 (6) 0.4024 (3) 0.7419 (3) 0.0659 (12)
N4 0.3597 (5) 0.0613 (2) 0.3022 (2) 0.0511 (11)
C1 0.2848 (8) 0.5466 (3) 0.6880 (4) 0.0732 (17)
C2 0.4126 (8) 0.4724 (4) 0.7893 (3) 0.0727 (17)
C3 0.3621 (7) 0.4108 (3) 0.6658 (3) 0.0584 (14)
C4 0.2098 (9) 0.6278 (3) 0.6563 (4) 0.091 (2)
H4A 0.1203 0.6448 0.6921 0.137*
H4B 0.1680 0.6190 0.6011 0.137*
H4C 0.2932 0.6715 0.6554 0.137*
C5 0.4801 (8) 0.4663 (4) 0.8757 (3) 0.097 (2)
H5A 0.4946 0.4076 0.8903 0.146*
H5B 0.4036 0.4925 0.9137 0.146*
H5C 0.5853 0.4950 0.8785 0.146*
C6 0.3767 (7) 0.3359 (3) 0.6121 (3) 0.0563 (13)
H6 0.4272 0.2875 0.6337 0.068*
C7 0.3217 (7) 0.3333 (3) 0.5341 (3) 0.0539 (12)
H7 0.2704 0.3823 0.5144 0.065*
C8 0.3331 (7) 0.2616 (3) 0.4757 (3) 0.0498 (12)
C9 0.2847 (7) 0.2736 (3) 0.3941 (3) 0.0545 (13)
H9 0.2475 0.3269 0.3771 0.065*
C10 0.2910 (7) 0.2076 (3) 0.3373 (3) 0.0544 (13)
H10 0.2559 0.2166 0.2830 0.065*
C11 0.3490 (6) 0.1284 (3) 0.3607 (3) 0.0471 (12)
C12 0.3989 (7) 0.1159 (3) 0.4417 (3) 0.0537 (12)
H12 0.4389 0.0630 0.4581 0.064*
C13 0.3898 (7) 0.1816 (3) 0.4988 (3) 0.0563 (13)
H13 0.4223 0.1720 0.5534 0.068*
C14 0.4250 (6) 0.0677 (3) 0.2221 (3) 0.0503 (12)
C15 0.5018 (7) 0.1357 (3) 0.1836 (3) 0.0630 (14)
H15 0.5147 0.1875 0.2108 0.076*
C16 0.5584 (7) 0.1243 (4) 0.1036 (3) 0.0700 (15)
H16 0.6104 0.1693 0.0766 0.084*
C17 0.5401 (7) 0.0476 (4) 0.0625 (3) 0.0712 (16)
H17 0.5785 0.0419 0.0083 0.085*
C18 0.4658 (6) −0.0198 (4) 0.1013 (3) 0.0636 (15)
H18 0.4539 −0.0713 0.0735 0.076*
C19 0.4080 (6) −0.0115 (3) 0.1823 (3) 0.0521 (12)
C20 0.3274 (6) −0.0680 (3) 0.2402 (3) 0.0520 (12)
C21 0.2764 (7) −0.1526 (3) 0.2366 (3) 0.0662 (15)
H21 0.2946 −0.1844 0.1888 0.079*
C22 0.2003 (8) −0.1884 (3) 0.3032 (3) 0.0733 (16)
H22 0.1661 −0.2448 0.3006 0.088*
C23 0.1725 (7) −0.1418 (3) 0.3754 (3) 0.0688 (15)
H23 0.1202 −0.1675 0.4204 0.083*
C24 0.2220 (7) −0.0573 (3) 0.3811 (3) 0.0624 (14)
H24 0.2028 −0.0260 0.4291 0.075*
C25 0.3004 (6) −0.0213 (3) 0.3137 (3) 0.0520 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.088 (4) 0.069 (3) 0.075 (3) −0.020 (3) 0.025 (3) −0.033 (3)
N2 0.075 (3) 0.049 (2) 0.065 (2) −0.009 (2) 0.021 (3) −0.010 (2)
N3 0.077 (3) 0.064 (3) 0.056 (2) −0.019 (3) 0.017 (3) −0.019 (2)
N4 0.064 (3) 0.044 (2) 0.045 (2) −0.002 (2) 0.001 (2) −0.0078 (17)
C1 0.081 (4) 0.057 (3) 0.081 (4) −0.021 (3) 0.031 (4) −0.025 (3)
C2 0.075 (4) 0.083 (4) 0.060 (3) −0.030 (4) 0.023 (3) −0.023 (3)
C3 0.067 (4) 0.055 (3) 0.053 (3) −0.015 (3) 0.017 (3) −0.013 (2)
C4 0.108 (5) 0.053 (3) 0.114 (5) 0.003 (3) 0.038 (5) −0.016 (3)
C5 0.099 (5) 0.126 (5) 0.066 (4) −0.037 (4) 0.013 (4) −0.041 (4)
C6 0.072 (4) 0.047 (3) 0.050 (3) −0.008 (3) 0.011 (3) −0.009 (2)
C7 0.065 (3) 0.043 (2) 0.053 (3) −0.005 (3) 0.008 (3) −0.004 (2)
C8 0.060 (3) 0.041 (2) 0.049 (3) −0.005 (2) 0.004 (3) −0.007 (2)
C9 0.071 (4) 0.040 (2) 0.052 (3) 0.006 (3) 0.001 (3) −0.005 (2)
C10 0.071 (3) 0.047 (3) 0.046 (2) 0.004 (3) −0.002 (3) −0.005 (2)
C11 0.056 (3) 0.043 (2) 0.043 (2) 0.000 (2) 0.001 (2) −0.008 (2)
C12 0.071 (3) 0.042 (2) 0.048 (3) 0.004 (3) −0.006 (3) −0.006 (2)
C13 0.074 (4) 0.051 (3) 0.043 (2) −0.001 (3) −0.004 (3) −0.007 (2)
C14 0.052 (3) 0.054 (3) 0.044 (3) 0.006 (3) 0.000 (2) −0.006 (2)
C15 0.074 (4) 0.063 (3) 0.051 (3) −0.003 (3) 0.002 (3) −0.006 (3)
C16 0.077 (4) 0.084 (4) 0.049 (3) −0.005 (4) 0.007 (3) −0.001 (3)
C17 0.074 (4) 0.094 (4) 0.045 (3) 0.007 (4) 0.003 (3) −0.006 (3)
C18 0.064 (4) 0.076 (3) 0.050 (3) 0.011 (3) −0.006 (3) −0.026 (3)
C19 0.051 (3) 0.057 (3) 0.048 (3) 0.008 (3) −0.007 (2) −0.010 (2)
C20 0.053 (3) 0.047 (3) 0.056 (3) 0.006 (2) −0.009 (3) −0.012 (2)
C21 0.072 (4) 0.054 (3) 0.072 (3) 0.004 (3) −0.011 (3) −0.019 (3)
C22 0.091 (4) 0.047 (3) 0.082 (4) −0.001 (3) −0.005 (4) −0.007 (3)
C23 0.078 (4) 0.057 (3) 0.072 (3) −0.004 (3) 0.008 (3) 0.003 (3)
C24 0.073 (4) 0.049 (3) 0.065 (3) 0.003 (3) 0.007 (3) −0.008 (2)
C25 0.057 (3) 0.044 (2) 0.055 (3) 0.004 (2) −0.005 (3) −0.004 (2)

Geometric parameters (Å, °)

N1—C1 1.328 (7) C10—H10 0.9300
N1—C2 1.342 (7) C11—C12 1.378 (6)
N2—C1 1.341 (5) C12—C13 1.384 (6)
N2—C3 1.341 (6) C12—H12 0.9300
N3—C3 1.333 (6) C13—H13 0.9300
N3—C2 1.342 (6) C14—C15 1.382 (6)
N4—C25 1.396 (6) C14—C19 1.406 (6)
N4—C14 1.396 (5) C15—C16 1.378 (6)
N4—C11 1.416 (5) C15—H15 0.9300
C1—C4 1.500 (7) C16—C17 1.382 (7)
C2—C5 1.496 (8) C16—H16 0.9300
C3—C6 1.465 (6) C17—C18 1.367 (7)
C4—H4A 0.9600 C17—H17 0.9300
C4—H4B 0.9600 C18—C19 1.391 (6)
C4—H4C 0.9600 C18—H18 0.9300
C5—H5A 0.9600 C19—C20 1.441 (6)
C5—H5B 0.9600 C20—C21 1.393 (6)
C5—H5C 0.9600 C20—C25 1.408 (6)
C6—C7 1.332 (6) C21—C22 1.357 (7)
C6—H6 0.9300 C21—H21 0.9300
C7—C8 1.471 (5) C22—C23 1.392 (7)
C7—H7 0.9300 C22—H22 0.9300
C8—C9 1.383 (6) C23—C24 1.389 (6)
C8—C13 1.388 (6) C23—H23 0.9300
C9—C10 1.383 (6) C24—C25 1.377 (6)
C9—H9 0.9300 C24—H24 0.9300
C10—C11 1.382 (6)
C1—N1—C2 115.1 (4) C10—C11—N4 120.6 (4)
C1—N2—C3 114.1 (4) C11—C12—C13 120.4 (4)
C3—N3—C2 114.3 (5) C11—C12—H12 119.8
C25—N4—C14 108.5 (4) C13—C12—H12 119.8
C25—N4—C11 125.8 (4) C12—C13—C8 121.0 (4)
C14—N4—C11 125.7 (4) C12—C13—H13 119.5
N1—C1—N2 125.4 (5) C8—C13—H13 119.5
N1—C1—C4 117.8 (5) C15—C14—N4 129.6 (4)
N2—C1—C4 116.7 (5) C15—C14—C19 121.6 (4)
N3—C2—N1 125.0 (5) N4—C14—C19 108.8 (4)
N3—C2—C5 116.6 (6) C16—C15—C14 117.8 (5)
N1—C2—C5 118.3 (5) C16—C15—H15 121.1
N3—C3—N2 126.1 (4) C14—C15—H15 121.1
N3—C3—C6 115.6 (5) C15—C16—C17 121.8 (5)
N2—C3—C6 118.4 (4) C15—C16—H16 119.1
C1—C4—H4A 109.5 C17—C16—H16 119.1
C1—C4—H4B 109.5 C18—C17—C16 120.2 (5)
H4A—C4—H4B 109.5 C18—C17—H17 119.9
C1—C4—H4C 109.5 C16—C17—H17 119.9
H4A—C4—H4C 109.5 C17—C18—C19 120.1 (5)
H4B—C4—H4C 109.5 C17—C18—H18 120.0
C2—C5—H5A 109.5 C19—C18—H18 120.0
C2—C5—H5B 109.5 C18—C19—C14 118.6 (5)
H5A—C5—H5B 109.5 C18—C19—C20 134.3 (5)
C2—C5—H5C 109.5 C14—C19—C20 107.1 (4)
H5A—C5—H5C 109.5 C21—C20—C25 119.1 (5)
H5B—C5—H5C 109.5 C21—C20—C19 133.9 (5)
C7—C6—C3 123.6 (5) C25—C20—C19 107.0 (4)
C7—C6—H6 118.2 C22—C21—C20 119.7 (5)
C3—C6—H6 118.2 C22—C21—H21 120.1
C6—C7—C8 127.3 (5) C20—C21—H21 120.1
C6—C7—H7 116.4 C21—C22—C23 121.0 (5)
C8—C7—H7 116.4 C21—C22—H22 119.5
C9—C8—C13 118.1 (4) C23—C22—H22 119.5
C9—C8—C7 119.0 (4) C24—C23—C22 120.8 (5)
C13—C8—C7 122.9 (4) C24—C23—H23 119.6
C8—C9—C10 121.0 (4) C22—C23—H23 119.6
C8—C9—H9 119.5 C25—C24—C23 118.2 (5)
C10—C9—H9 119.5 C25—C24—H24 120.9
C9—C10—C11 120.5 (4) C23—C24—H24 120.9
C9—C10—H10 119.8 C24—C25—N4 130.0 (4)
C11—C10—H10 119.8 C24—C25—C20 121.2 (4)
C12—C11—C10 119.0 (4) N4—C25—C20 108.7 (4)
C12—C11—N4 120.3 (4)
C2—N1—C1—N2 −0.5 (9) C25—N4—C14—C19 −0.3 (5)
C2—N1—C1—C4 −178.7 (5) C11—N4—C14—C19 −177.8 (4)
C3—N2—C1—N1 0.1 (8) N4—C14—C15—C16 178.7 (5)
C3—N2—C1—C4 178.3 (5) C19—C14—C15—C16 1.4 (8)
C3—N3—C2—N1 −0.4 (8) C14—C15—C16—C17 0.0 (8)
C3—N3—C2—C5 179.4 (5) C15—C16—C17—C18 −0.7 (9)
C1—N1—C2—N3 0.7 (9) C16—C17—C18—C19 0.1 (8)
C1—N1—C2—C5 −179.2 (5) C17—C18—C19—C14 1.2 (7)
C2—N3—C3—N2 0.0 (8) C17—C18—C19—C20 −179.4 (5)
C2—N3—C3—C6 179.0 (4) C15—C14—C19—C18 −1.9 (7)
C1—N2—C3—N3 0.1 (8) N4—C14—C19—C18 −179.8 (4)
C1—N2—C3—C6 −178.9 (5) C15—C14—C19—C20 178.5 (5)
N3—C3—C6—C7 −179.4 (5) N4—C14—C19—C20 0.6 (5)
N2—C3—C6—C7 −0.3 (8) C18—C19—C20—C21 −0.2 (10)
C3—C6—C7—C8 179.2 (5) C14—C19—C20—C21 179.3 (5)
C6—C7—C8—C9 −173.2 (5) C18—C19—C20—C25 179.7 (5)
C6—C7—C8—C13 7.1 (8) C14—C19—C20—C25 −0.8 (5)
C13—C8—C9—C10 0.7 (8) C25—C20—C21—C22 0.7 (8)
C7—C8—C9—C10 −179.1 (5) C19—C20—C21—C22 −179.3 (6)
C8—C9—C10—C11 −1.3 (8) C20—C21—C22—C23 −0.2 (9)
C9—C10—C11—C12 0.7 (8) C21—C22—C23—C24 0.1 (9)
C9—C10—C11—N4 −178.3 (5) C22—C23—C24—C25 −0.5 (8)
C25—N4—C11—C12 49.7 (7) C23—C24—C25—N4 178.9 (5)
C14—N4—C11—C12 −133.2 (5) C23—C24—C25—C20 1.1 (8)
C25—N4—C11—C10 −131.3 (5) C14—N4—C25—C24 −178.2 (5)
C14—N4—C11—C10 45.8 (7) C11—N4—C25—C24 −0.7 (8)
C10—C11—C12—C13 0.5 (8) C14—N4—C25—C20 −0.2 (5)
N4—C11—C12—C13 179.5 (5) C11—N4—C25—C20 177.3 (4)
C11—C12—C13—C8 −1.0 (8) C21—C20—C25—C24 −1.2 (7)
C9—C8—C13—C12 0.4 (8) C19—C20—C25—C24 178.8 (4)
C7—C8—C13—C12 −179.8 (5) C21—C20—C25—N4 −179.4 (5)
C25—N4—C14—C15 −177.9 (5) C19—C20—C25—N4 0.6 (5)
C11—N4—C14—C15 4.6 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5017).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Cui, Y. Z., Fang, Q., Huang, Z. L., Xue, G., Xu, G. B. & Yu, W. T. (2004). J. Mater. Chem.14, 2443–2449.
  3. Cui, Y. Z., Fang, Q., Lei, H., Xue, G. & Yu, W. T. (2003). Chem. Phys. Lett.377, 507–511.
  4. Kannan, R., He, G. S., Lin, T. C., Prasad, P. N., Vaia, R. A. & Tan, L. S. (2004). Chem. Mater.16, 185–194.
  5. Maury, O. & Bozec, H. L. (2005). Acc. Chem. Res.38, 691–704. [DOI] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Westrip, S. P. (2009). publCIF. In preparation.
  10. Zhong, H. L., Xu, E. J., Zeng, D. L., Du, J. P., Sun, J., Ren, S. J., Jiang, B. & Fang, Q. (2008). Org. Lett.10, 709–712. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030359/bt5017sup1.cif

e-65-o2095-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030359/bt5017Isup2.hkl

e-65-o2095-Isup2.hkl (112.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES