Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):m1139–m1140. doi: 10.1107/S1600536809033467

Poly[bis­[μ4-N-(2-hydroxy­imino­propion­yl)-N′-(2-oxidoimino­propion­yl)propane-1,3-diaminato]dimethano­lcalciumdicopper(II)]

Valentina A Kalibabchuk a,*, Natalia I Usenko b, Irina A Golenya b, Turganbay S Iskenderov c, Matti Haukka d
PMCID: PMC2970044  PMID: 21577475

Abstract

In the title compound, [CaCu2(C9H13N4O4)2(CH3OH)2]n, the CaII atom lies on an inversion center and is situated in a moderately distorted octa­hedral environment. The CuII atom is in a distorted square-pyramidal geometry, defined by four N atoms belonging to the amide and oxime groups of the triply deprotonated residue of N,N′-bis­(2-hydroxy­imino­propano­yl)propane-1,3-diamine (H4pap) and one oxime O atom from a neighboring Hpap ligand at the apical site, forming a dimeric [Cu2(Hpap)2]2− unit. Each dimeric unit connects four Ca atoms and each Ca atom links four [Cu2(Hpap)2]2− units through Ca—O(amide) bonds, leading to a three-dimensional framework. The crystal structure involves intra- and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the coordination chemistry of tetra­dentate oxime-and-amide open-chain ligands, see: Duda et al. (1997); Fritsky et al. (1999). For oximes as efficient metal chelators, see: Gumienna-Kontecka et al. (2000); Onindo et al. (1995); Sliva et al. (1997a ,b ). For the use of oximes in stabilizing high oxidation states of metal ions, see: Fritsky et al. (1998, 2006). For related structures, see: Kanderal et al. (2005); Fritsky (1999); Fritsky et al. (2000); Mokhir et al. (2002); Moroz et al. (2008); Wörl et al. (2005).graphic file with name e-65-m1139-scheme1.jpg

Experimental

Crystal data

  • [CaCu2(C9H13N4O4)2(CH4O)2]

  • M r = 713.71

  • Monoclinic, Inline graphic

  • a = 10.0554 (4) Å

  • b = 8.7794 (3) Å

  • c = 15.4465 (7) Å

  • β = 97.882 (2)°

  • V = 1350.74 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 120 K

  • 0.28 × 0.24 × 0.13 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.622, T max = 0.796

  • 8392 measured reflections

  • 3074 independent reflections

  • 2573 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.04

  • 3074 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033467/hy2216sup1.cif

e-65-m1139-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033467/hy2216Isup2.hkl

e-65-m1139-Isup2.hkl (150.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 1.9751 (18)
Cu1—N2 1.9469 (18)
Cu1—N3 1.9320 (19)
Cu1—N4 1.9650 (18)
Cu1—O2i 2.4646 (16)
Ca1—O3 2.3134 (16)
Ca1—O4ii 2.2818 (16)
Ca1—O5 2.3811 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2 0.99 1.65 2.610 (2) 165
O5—H5O⋯O2iii 0.94 1.79 2.681 (2) 159

Symmetry code: (iii) Inline graphic.

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

supplementary crystallographic information

Comment

N,N'-bis(2-hydroxyiminopropionylpropane)-1,2-diamine and its homologues (Duda et al., 1997; Fritsky et al., 1999), tetradentate oxime-and-amide open-chain ligands, have been intensively studied during the past 15 years as efficient polychelate ligands forming stable complexes with nickel(II) and copper(II) ions. The presence of an additional strong donor amide function in the vicinity of the oxime group results in important increase of chelating efficiency. For example, amide derivatives of 2-hydroxyiminopropanoic acid were shown to act as highly efficient chelators with respect to copper(II), nickel(II) and aluminium(III) ions (Gumienna-Kontecka et al., 2000; Onindo et al., 1995; Sliva et al., 1997a,b). Also, tetradentate oxime-and-amide open-chain ligands possess strong σ-donor capacity and thus have been successfully used for preparation of metal complexes with efficient stabilization of unusually high oxidation states of transition metal ions like CuIII and NiIII (Fritsky et al., 1998; Fritsky et al., 2006).

Earlier, the crystal and molecular structures of mononuclear anionic copper(II) complexes with N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (H4pap) of composition [Li(H2O)4][Cu(Hpap)].2H2O (Duda et al., 1997) and PPh4[Cu(Hpap)].4.5H2O (Kanderal et al., 2005) have been reported, as well as a series of modular cationic and anionic complex compounds containing [Cu(Hpap)]- anions (Fritsky et al., 2000). The present report describes the crystal structure of the title compound, a three-dimensional coordination polymer of composition [CaCu2(Hpap)2(CH3OH)2], featuring copper(II) complex anions connected by calcium ions.

The structure of the title compound is presented in Fig. 1. The ligand in the complex anion is coordinated in a tetradentate fashion forming three condensed chelate rings and being triply deprotonated. In the complex anion the CuII atom is situated in a distorted square-pyramidal geometry. The basal plane is defined by four N atoms belonging to the deprotonated amide and oxime groups of the Hpap ligand, which adopt a pseudo-macrocyclic conformation due to the presence of an intramolecular hydrogen bond uniting the cis-oximate O atoms. The apical position is occupied by the oxime O2 atom, and as a result, two neighboring Cu complex anions are united into a centrosymmetric [Cu2(Hpap)2]2- dimer, with a Cu···Cui [symmetry code: (i) -x, 2-y, -z] separation of 4.164 (1) Å. Each dimeric unit connects four Ca atoms and each Ca links four dimeric [Cu2(Hpap)2]2- units.

The basal plane of the Cu1 atom exhibits tetrahedral distortion with deviations of the N atoms from the mean plane defined by them by 0.025 (1) Å. Cu1 is displaced by 0.255 (1) Å from this plane in the direction of the apical O atom. The observed Cu—N distances (Table 1) are normal for the complexes with N-coordinated amide and oxime groups (Fritsky et al., 1998; Fritsky et al., 2006). A noticeable difference between Cu—N(amide) and Cu—N(oxime) distances is observed. The O1···O2 separation of the intramolecular hydrogen bond is equal to 2.610 (2) Å, which is close to the values reported for the analogous complexes with lithium and tetraphenylphosponium cations. The C═N, C═O, N—O and C—N bond lengths are typical for 2-hydroxyiminopropanoic acid and its amide derivatives (Fritsky, 1999; Mokhir et al., 2002; Moroz et al., 2008).

The CaII atom occupies a special position and is situated in moderately distorted octahedral environment (Fig. 1). The Ca—O bond distances are similar to the reported ones for six-coordinate calcium complexes (Wörl et al., 2005). The axial bond length Ca1—O5 [2.381 (1) Å] are somewhat longer than the equatorial ones. The O—Ca—O anlges values are in the range 84.31 (6) to 95.69 (6)°. The coordination geometry of the Ca atom is formed by six O atoms belonging to two methanol molecules and four amide groups. Thus, each Ca atom unites four dimeric Cu complex anionic unit. These Ca—O bonds, together with the intermolecular O—H···O hydrogen bonds between the methanol OH group and oxime O2 atom (Table 2), lead to a three-dimensional framework (Fig. 2).

Experimental

A solution of N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (0.244 g, 1 mmol) in 10 ml of methanol was heated to 323 K and added with stirring to a solution of copper(II) chloride dihydrate (0.170 g, 1 mmol) in water (5 ml). Then an aqueous solution of calcium hydrocarbonate (4 ml, 1 M) was added. The obtained mixture was stirred at 323 K for 10 min and then filtered. The filtrate was cooled, filtered and set aside for crystallization at room temperature. The resulting dark-red crystals formed within 12 h were separated by filtration, washed with water and air-dried (yield 78%). N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine was prepared according to the reported procedure (Duda et al., 1997).

Refinement

O-bonded H atoms were located from a difference Fourier map and refined as riding atoms, with Uiso = 1.5Ueq(O). H atoms of methyl and methylene groups were positioned geometrically and refined as riding atoms, with C—H = 0.99 (methylene) and 0.98 (methyl) Å, and Uiso = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) -x, 2-y, -z; (ii) 1/2-x, 1/2+y, 1/2-z; (iv) -x, 2-y, 1-z; (v) -1/2+x, 3/2-y, 1/2+z.]

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[CaCu2(C9H13N4O4)2(CH4O)2] F(000) = 736
Mr = 713.71 Dx = 1.755 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3254 reflections
a = 10.0554 (4) Å θ = 1.0–27.5°
b = 8.7794 (3) Å µ = 1.83 mm1
c = 15.4465 (7) Å T = 120 K
β = 97.882 (2)° Block, dark red
V = 1350.74 (9) Å3 0.28 × 0.24 × 0.13 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 3074 independent reflections
Radiation source: fine-focus sealed tube 2573 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.035
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 2.6°
φ and ω scans with κ offset h = −11→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −11→10
Tmin = 0.622, Tmax = 0.796 l = −20→19
8392 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.0009P] where P = (Fo2 + 2Fc2)/3
3074 reflections (Δ/σ)max = 0.002
192 parameters Δρmax = 1.11 e Å3
0 restraints Δρmin = −0.56 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.07005 (3) 0.90813 (3) 0.122024 (17) 0.01389 (10)
Ca1 0.0000 1.0000 0.5000 0.01418 (14)
O1 −0.02176 (17) 1.23359 (18) 0.11376 (10) 0.0201 (4)
H1O 0.0287 1.2169 0.0643 0.030*
O2 0.11916 (16) 1.14306 (18) −0.00651 (10) 0.0171 (3)
O3 −0.05881 (17) 0.92919 (19) 0.35557 (10) 0.0213 (4)
O4 0.38614 (16) 0.70750 (19) 0.04006 (11) 0.0210 (4)
O5 −0.21320 (16) 1.12267 (19) 0.48180 (11) 0.0219 (4)
H5O −0.2529 1.2181 0.4868 0.033*
N1 −0.01214 (18) 1.0977 (2) 0.15866 (12) 0.0146 (4)
N2 0.01537 (19) 0.8358 (2) 0.23095 (12) 0.0173 (4)
N3 0.1956 (2) 0.7474 (2) 0.10597 (12) 0.0180 (4)
N4 0.15835 (18) 1.0068 (2) 0.03093 (12) 0.0144 (4)
C1 −0.1226 (3) 1.2240 (3) 0.27158 (17) 0.0288 (6)
H1A −0.0570 1.3063 0.2843 0.043*
H1B −0.1542 1.1913 0.3259 0.043*
H1C −0.1989 1.2607 0.2305 0.043*
C2 −0.0587 (2) 1.0934 (3) 0.23219 (15) 0.0169 (5)
C3 −0.0343 (2) 0.9408 (3) 0.27836 (15) 0.0168 (5)
C4 0.0562 (3) 0.6895 (3) 0.27209 (15) 0.0225 (5)
H4A −0.0109 0.6109 0.2505 0.027*
H4B 0.0575 0.6985 0.3361 0.027*
C5 0.1924 (3) 0.6394 (3) 0.25333 (17) 0.0294 (6)
H5A 0.2165 0.5452 0.2872 0.035*
H5B 0.2581 0.7185 0.2762 0.035*
C6 0.2103 (3) 0.6087 (3) 0.15904 (17) 0.0251 (5)
H6A 0.3006 0.5648 0.1570 0.030*
H6B 0.1429 0.5329 0.1340 0.030*
C7 0.2839 (2) 0.7824 (3) 0.05361 (14) 0.0163 (5)
C8 0.2556 (2) 0.9315 (3) 0.00510 (14) 0.0158 (4)
C9 0.3318 (2) 0.9800 (3) −0.06579 (15) 0.0219 (5)
H9A 0.2709 1.0303 −0.1120 0.033*
H9B 0.3720 0.8905 −0.0899 0.033*
H9C 0.4028 1.0511 −0.0423 0.033*
C10 −0.3241 (2) 1.0385 (3) 0.43680 (17) 0.0251 (5)
H10A −0.2903 0.9503 0.4076 0.038*
H10B −0.3758 1.1041 0.3931 0.038*
H10C −0.3821 1.0035 0.4789 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01633 (15) 0.01304 (15) 0.01304 (14) 0.00299 (10) 0.00462 (10) 0.00150 (10)
Ca1 0.0144 (3) 0.0150 (3) 0.0135 (3) −0.0026 (2) 0.0032 (2) −0.0004 (2)
O1 0.0261 (9) 0.0151 (8) 0.0197 (8) 0.0043 (7) 0.0050 (7) 0.0032 (7)
O2 0.0183 (8) 0.0135 (7) 0.0195 (8) 0.0018 (6) 0.0021 (6) 0.0054 (6)
O3 0.0271 (9) 0.0250 (9) 0.0130 (8) −0.0030 (7) 0.0071 (7) −0.0015 (7)
O4 0.0192 (8) 0.0214 (8) 0.0231 (8) 0.0078 (7) 0.0053 (7) −0.0014 (7)
O5 0.0176 (9) 0.0183 (8) 0.0293 (9) 0.0011 (6) 0.0012 (7) −0.0042 (7)
N1 0.0148 (9) 0.0136 (9) 0.0153 (9) 0.0007 (7) 0.0015 (7) 0.0017 (7)
N2 0.0221 (10) 0.0158 (9) 0.0146 (9) 0.0019 (8) 0.0053 (8) 0.0026 (8)
N3 0.0225 (10) 0.0155 (9) 0.0167 (9) 0.0049 (8) 0.0057 (8) 0.0039 (8)
N4 0.0139 (9) 0.0140 (9) 0.0148 (9) 0.0009 (7) 0.0003 (7) 0.0009 (7)
C1 0.0398 (16) 0.0247 (13) 0.0239 (13) 0.0110 (11) 0.0120 (11) −0.0002 (11)
C2 0.0155 (11) 0.0186 (11) 0.0165 (11) 0.0013 (9) 0.0020 (9) −0.0017 (9)
C3 0.0148 (11) 0.0200 (11) 0.0151 (10) −0.0021 (9) 0.0007 (8) 0.0000 (9)
C4 0.0309 (14) 0.0201 (12) 0.0175 (11) 0.0041 (10) 0.0071 (10) 0.0046 (10)
C5 0.0306 (14) 0.0299 (14) 0.0277 (14) 0.0073 (11) 0.0043 (11) 0.0093 (12)
C6 0.0306 (14) 0.0202 (12) 0.0257 (13) 0.0113 (10) 0.0082 (11) 0.0045 (10)
C7 0.0169 (11) 0.0165 (11) 0.0146 (10) 0.0030 (9) −0.0008 (8) −0.0016 (9)
C8 0.0148 (11) 0.0186 (11) 0.0138 (10) 0.0004 (9) 0.0010 (8) −0.0012 (9)
C9 0.0195 (12) 0.0265 (13) 0.0209 (12) 0.0005 (10) 0.0065 (9) 0.0019 (10)
C10 0.0199 (12) 0.0237 (12) 0.0304 (13) −0.0006 (10) −0.0007 (10) −0.0041 (11)

Geometric parameters (Å, °)

Cu1—N1 1.9751 (18) C1—C2 1.486 (3)
Cu1—N2 1.9469 (18) C1—H1A 0.9800
Cu1—N3 1.9320 (19) C1—H1B 0.9800
Cu1—N4 1.9650 (18) C1—H1C 0.9800
Cu1—O2i 2.4646 (16) C2—C3 1.522 (3)
Ca1—O3 2.3134 (16) C4—C5 1.504 (4)
Ca1—O4ii 2.2818 (16) C4—H4A 0.9900
Ca1—O5 2.3811 (16) C4—H4B 0.9900
O1—N1 1.377 (2) C5—C6 1.516 (4)
O1—H1O 0.9852 C5—H5A 0.9900
O2—N4 1.363 (2) C5—H5B 0.9900
O3—C3 1.255 (3) C6—H6A 0.9900
O4—C7 1.262 (3) C6—H6B 0.9900
O5—C10 1.436 (3) C7—C8 1.516 (3)
O5—H5O 0.9358 C8—C9 1.482 (3)
N1—C2 1.287 (3) C9—H9A 0.9800
N2—C3 1.317 (3) C9—H9B 0.9800
N2—C4 1.466 (3) C9—H9C 0.9800
N3—C7 1.316 (3) C10—H10A 0.9800
N3—C6 1.464 (3) C10—H10B 0.9800
N4—C8 1.288 (3) C10—H10C 0.9800
N3—Cu1—N2 98.02 (8) H1B—C1—H1C 109.5
N3—Cu1—N4 82.10 (8) N1—C2—C1 124.7 (2)
N2—Cu1—N4 166.31 (8) N1—C2—C3 112.64 (19)
N3—Cu1—N1 163.47 (8) C1—C2—C3 122.6 (2)
N2—Cu1—N1 81.29 (8) O3—C3—N2 127.6 (2)
N4—Cu1—N1 94.69 (8) O3—C3—C2 118.5 (2)
N3—Cu1—O2i 103.12 (7) N2—C3—C2 113.87 (19)
N2—Cu1—O2i 106.54 (7) N2—C4—C5 112.4 (2)
N4—Cu1—O2i 86.66 (6) N2—C4—H4A 109.1
N1—Cu1—O2i 92.83 (7) C5—C4—H4A 109.1
O4iii—Ca1—O4ii 180.00 (8) N2—C4—H4B 109.1
O4iii—Ca1—O3iv 91.40 (6) C5—C4—H4B 109.1
O4ii—Ca1—O3iv 88.60 (6) H4A—C4—H4B 107.9
O4iii—Ca1—O3 88.60 (6) C4—C5—C6 117.9 (2)
O4ii—Ca1—O3 91.40 (6) C4—C5—H5A 107.8
O3iv—Ca1—O3 180.0 C6—C5—H5A 107.8
O4iii—Ca1—O5 85.18 (6) C4—C5—H5B 107.8
O4ii—Ca1—O5 94.82 (6) C6—C5—H5B 107.8
O3iv—Ca1—O5 95.69 (6) H5A—C5—H5B 107.2
O3—Ca1—O5 84.31 (6) N3—C6—C5 112.0 (2)
O4iii—Ca1—O5iv 94.82 (6) N3—C6—H6A 109.2
O4ii—Ca1—O5iv 85.18 (6) C5—C6—H6A 109.2
O3iv—Ca1—O5iv 84.31 (6) N3—C6—H6B 109.2
O3—Ca1—O5iv 95.69 (6) C5—C6—H6B 109.2
O5—Ca1—O5iv 180.0 H6A—C6—H6B 107.9
N1—O1—H1O 104.7 O4—C7—N3 127.8 (2)
C10—O5—H5O 100.9 O4—C7—C8 118.0 (2)
C2—N1—O1 117.47 (18) N3—C7—C8 114.15 (19)
C2—N1—Cu1 116.42 (15) N4—C8—C9 124.9 (2)
O1—N1—Cu1 126.09 (14) N4—C8—C7 112.86 (19)
C3—N2—C4 118.48 (19) C9—C8—C7 122.2 (2)
C3—N2—Cu1 115.18 (15) C8—C9—H9A 109.5
C4—N2—Cu1 124.40 (15) C8—C9—H9B 109.5
C7—N3—C6 120.9 (2) H9A—C9—H9B 109.5
C7—N3—Cu1 114.57 (15) C8—C9—H9C 109.5
C6—N3—Cu1 123.60 (15) H9A—C9—H9C 109.5
C8—N4—O2 120.42 (18) H9B—C9—H9C 109.5
C8—N4—Cu1 115.63 (15) O5—C10—H10A 109.5
O2—N4—Cu1 123.91 (13) O5—C10—H10B 109.5
C2—C1—H1A 109.5 H10A—C10—H10B 109.5
C2—C1—H1B 109.5 O5—C10—H10C 109.5
H1A—C1—H1B 109.5 H10A—C10—H10C 109.5
C2—C1—H1C 109.5 H10B—C10—H10C 109.5
H1A—C1—H1C 109.5
N3—Cu1—N1—C2 −87.3 (3) N2—Cu1—N4—O2 −93.4 (3)
N2—Cu1—N1—C2 1.52 (17) N1—Cu1—N4—O2 −21.15 (16)
N4—Cu1—N1—C2 −165.30 (17) O2i—Cu1—N4—O2 71.42 (16)
O2i—Cu1—N1—C2 107.82 (17) Cu1i—Cu1—N4—O2 50.60 (13)
Cu1i—Cu1—N1—C2 150.40 (17) O1—N1—C2—C1 0.4 (3)
N3—Cu1—N1—O1 91.4 (3) Cu1—N1—C2—C1 179.3 (2)
N2—Cu1—N1—O1 −179.78 (18) O1—N1—C2—C3 −176.28 (17)
N4—Cu1—N1—O1 13.41 (17) Cu1—N1—C2—C3 2.5 (2)
O2i—Cu1—N1—O1 −73.47 (17) C4—N2—C3—O3 −4.2 (4)
Cu1i—Cu1—N1—O1 −30.90 (16) Cu1—N2—C3—O3 −169.08 (19)
N3—Cu1—N2—C3 157.38 (17) C4—N2—C3—C2 173.6 (2)
N4—Cu1—N2—C3 67.8 (4) Cu1—N2—C3—C2 8.8 (2)
N1—Cu1—N2—C3 −5.93 (16) N1—C2—C3—O3 170.6 (2)
O2i—Cu1—N2—C3 −96.30 (17) C1—C2—C3—O3 −6.2 (3)
Cu1i—Cu1—N2—C3 −65.8 (2) N1—C2—C3—N2 −7.4 (3)
N3—Cu1—N2—C4 −6.4 (2) C1—C2—C3—N2 175.8 (2)
N4—Cu1—N2—C4 −96.0 (4) C3—N2—C4—C5 −133.0 (2)
N1—Cu1—N2—C4 −169.8 (2) Cu1—N2—C4—C5 30.3 (3)
O2i—Cu1—N2—C4 99.87 (19) N2—C4—C5—C6 −62.6 (3)
Cu1i—Cu1—N2—C4 130.39 (16) C7—N3—C6—C5 132.3 (2)
N2—Cu1—N3—C7 −159.43 (17) Cu1—N3—C6—C5 −35.9 (3)
N4—Cu1—N3—C7 6.74 (16) C4—C5—C6—N3 65.8 (3)
N1—Cu1—N3—C7 −73.0 (3) Ca1v—O4—C7—N3 57.7 (5)
O2i—Cu1—N3—C7 91.42 (17) Ca1v—O4—C7—C8 −122.4 (3)
Cu1i—Cu1—N3—C7 45.67 (17) C6—N3—C7—O4 1.4 (4)
N2—Cu1—N3—C6 9.4 (2) Cu1—N3—C7—O4 170.55 (19)
N4—Cu1—N3—C6 175.6 (2) C6—N3—C7—C8 −178.6 (2)
N1—Cu1—N3—C6 95.8 (3) Cu1—N3—C7—C8 −9.4 (2)
O2i—Cu1—N3—C6 −99.71 (19) O2—N4—C8—C9 −0.9 (3)
Cu1i—Cu1—N3—C6 −145.46 (18) Cu1—N4—C8—C9 176.75 (18)
N3—Cu1—N4—C8 −2.44 (16) O2—N4—C8—C7 −179.45 (17)
N2—Cu1—N4—C8 89.0 (4) Cu1—N4—C8—C7 −1.8 (2)
N1—Cu1—N4—C8 161.24 (16) O4—C7—C8—N4 −172.59 (19)
O2i—Cu1—N4—C8 −106.19 (16) N3—C7—C8—N4 7.3 (3)
Cu1i—Cu1—N4—C8 −127.01 (18) O4—C7—C8—C9 8.9 (3)
N3—Cu1—N4—O2 175.17 (17) N3—C7—C8—C9 −171.2 (2)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x, −y+2, −z+1; (v) −x+1/2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2 0.99 1.65 2.610 (2) 165
O5—H5O···O2vi 0.94 1.79 2.681 (2) 159

Symmetry codes: (vi) x−1/2, −y+5/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2216).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Fritsky, I. O. (1999). J. Chem. Soc. Dalton Trans pp. 825–826.
  5. Fritsky, I. O., Karaczyn, A., Kozłowski, H., Głowiak, T. & Prisyazhnaya, E. V. (1999). Z. Naturforsch. Teil B, 54, 456–460.
  6. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun pp. 4125–4127. [DOI] [PubMed]
  7. Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
  8. Fritsky, I. O., Świątek-Kozłowska, J., Kapshuk, A. A., Kozłowski, H., Sliva, T. Yu., Gumienna-Kontecka, E., Prisyazhnaya, E. V. & Iskenderov, T. S. (2000). Z. Naturforsch. Teil B, 55, 966–970.
  9. Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans pp. 4201–4208.
  10. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  11. Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  12. Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem 47, 5656–5665. [DOI] [PubMed]
  13. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  14. Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans pp. 273–276.
  19. Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem.65, 287–294.
  20. Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem pp. 759–765.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033467/hy2216sup1.cif

e-65-m1139-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033467/hy2216Isup2.hkl

e-65-m1139-Isup2.hkl (150.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES