Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):m1141. doi: 10.1107/S1600536809033820

Diaqua­(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca­ne)nickel(II) tetra­cyanidonickelate(II)

Qian Zhang a, Xiao-Ping Shen a,*, Hu Zhou a
PMCID: PMC2970059  PMID: 21577476

Abstract

In the title complex, [Ni(C16H36N4)(H2O)2][Ni(CN)4], the [Ni(teta)(H2O)2]2+ cations (teta = 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca­ne) and [Ni(CN)4]2− anions are arranged in an alternating fashion through electrostatic and N—H⋯N and O—H⋯N hydrogen-bonding inter­actions, forming a two-dimensional layered structure. Adjacent layers are linked through weak van der Waals inter­actions, resulting in a three-dimensional supra­molecular network.

Related literature

For background to cyanide-bridged complexes, see: Lescouëzec et al. (2005); Liu et al. (2008); Xu et al. (2009). For related structures, see: Jiang et al. (2005, 2007); Ni et al. (2008); Yamada & Iwasaki (1969).graphic file with name e-65-m1141-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H36N4)(H2O)2][Ni(CN)4]

  • M r = 542.02

  • Monoclinic, Inline graphic

  • a = 8.065 (8) Å

  • b = 13.255 (12) Å

  • c = 13.559 (10) Å

  • β = 116.59 (4)°

  • V = 1296 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 173 K

  • 0.58 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.808, T max = 0.888

  • 9778 measured reflections

  • 2530 independent reflections

  • 1576 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.093

  • S = 1.01

  • 2530 reflections

  • 163 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033820/at2863sup1.cif

e-65-m1141-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033820/at2863Isup2.hkl

e-65-m1141-Isup2.hkl (124.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.81 (3) 2.46 (3) 3.250 (4) 164 (3)
N3—H3⋯N2 0.88 (3) 2.34 (3) 3.201 (4) 167 (3)
O1—H1B⋯N2 0.830 (10) 1.964 (11) 2.789 (4) 172 (3)
O1—H1A⋯N1ii 0.835 (10) 1.939 (11) 2.775 (4) 179 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Jiangsu Province (BK2009196) and the Foundation of the State Key Laboratory of Coordination Chemistry (China) for financial support.

supplementary crystallographic information

Comment

In the past decades, there has been a continuous interest in the utilization of cyano-containing building blocks for constructing either ion-paired or cyano-bridged assemblies due to their potential applications and intriguing architectures (Lescouëzec et al., 2005; Liu et al., 2008; Xu et al., 2009). It has been found that cyano-bridged bimetallic assemblies, derived from tailored cyanometalate entities [MLp(CN)q]n- (L = polydentate ligand) and unsaturated coordinated complex [M'(L)]m+, possess extraordinarily excellent magnetic properties such as SMM (single molecular magnets) and SCM (single chain magnets). Recently, we had expected to obtain such low-dimensional system using [Cr(salen)(CN)2]- (Yamada et al., 1969; Ni et al., 2008) and [Ni(teta)]2+ as the building blocks. However, an unexpected tetracyanonickel(II)-based complex of [Ni(teta)(H2O)2][Ni(CN)4] instead of any [Cr(salen)(CN)2]--based complex was obtained. So far, Jiang et al. (Jiang et al., 2005; 2007) have reported several complexes based on the direct assembly of [Ni(CN)4]2- and [Ni(teta)]2+ building blocks, and they found that all these complexes showed cyano-bridged structures. In contrast to these reported complexes, the title complex of [Ni(teta)(H2O)2][Ni(CN)4] is ion-paired and its crystal structure is reported here.

The title complex consists of [Ni(teta)(H2O)2]2+ cation and [Ni(CN)4]2- anion (Fig. 1). In [Ni(teta)(H2O)2]2+ cation, the NiII ion assumes a distorted octahedral coordination geometry, in which the equatorial sites are occupied by four nitrogen atoms of the macrocyclic ligand teta with the Ni(2)—N bond distances of 2.067 (3) and 2.100 (3) Å, while the axial positions are occupied by two oxygen atoms of water molecules with Ni(2)—O distance of 2.183 (2) Å. As usual, [Ni(CN)4]2- anion exhibits a square planar structure, where all four cyano groups are terminal ones, with Ni(1)—C(1) and Ni(1)—C(2) distances of 1.862 (3) and 1.869 (3) Å, respectively. The Ni(1)—C—N bonds deviate slightly from linearity with the bond angles 177.2 (3) and 178.1 (3)°. [Ni(teta)(H2O)2]2+ and [Ni(CN)4]2- are arranged in an alternating fashion, forming a two-dimensional layered structure through electrostatic and hydrogen bonding interactions (Fig. 2). Furthermore, adjacent layers are linked through weak van der Waals interactions, resulting in a three-dimensional supramolecular network (Fig. 3).

Experimental

A solution of Ni(teta)(ClO4)2 (0.05 mmol) in DMF (10 ml) was added to a solution of K[Cr(salen)(CN)2].H2O (0.05 mmol) in MeOH/H2O (1/1(V/V),10 ml) mixture. The resulting solution was filtrated and the filtrate was left to allow slow evaporation in dark at room temperature. Pink prism crystals of the title complex were obtained after two weeks, washed with MeOH and H2O, respectively, and dried in air. Anal. Calc. for C20H40Ni2N8O2: C, 44.32; H, 7.44; N, 20.68; Ni, 21.66%. Found: C, 44.28; H, 7.49; N, 20.71; Ni, 21.52%.

Refinement

All non-H atoms were refined anisotropically. The C(H) atoms of the teta ligands were placed incalculated position [C-H = 0.99 Å or 0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). The N(H) atoms were located from the difference Fourier maps, and refined as riding with Uiso(H) = 1.2Ueq(N). The O(H) atoms of the coordinated water molecules were located in a difference Fourier map and refined as riding [O-H = 0.84 Å], with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Projection of the title complex viewed from the a-axis, showing the two-dimensional structure. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, -y-0.5, z+0.5; (ii) -x, y+0.5, -z+0.5.

Fig. 3.

Fig. 3.

The three-dimensional supramolecular network of the title complex.

Crystal data

[Ni(C16H36N4)(H2O)2][Ni(CN)4] F(000) = 576
Mr = 542.02 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4392 reflections
a = 8.065 (8) Å θ = 2.3–26.0°
b = 13.255 (12) Å µ = 1.48 mm1
c = 13.559 (10) Å T = 173 K
β = 116.59 (4)° Prism, pink
V = 1296 (2) Å3 0.58 × 0.16 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 1576 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.047
φ and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −9→9
Tmin = 0.808, Tmax = 0.888 k = −16→15
9778 measured reflections l = −16→16
2530 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3
2530 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.73 e Å3
2 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.0000 0.0000 0.0000 0.02563 (16)
Ni2 0.0000 0.0000 0.5000 0.02354 (15)
O1 0.1715 (3) 0.08968 (15) 0.44654 (15) 0.0298 (5)
H1A 0.153 (5) 0.1515 (9) 0.449 (3) 0.045*
H1B 0.146 (4) 0.086 (2) 0.3803 (10) 0.045*
N1 −0.1059 (5) −0.2055 (2) 0.0474 (2) 0.0537 (8)
N2 0.0522 (4) 0.0799 (2) 0.2194 (2) 0.0477 (7)
N3 −0.1760 (3) −0.02613 (18) 0.33256 (18) 0.0278 (6)
H3 −0.120 (4) 0.012 (2) 0.303 (2) 0.033*
N4 0.1362 (3) −0.12904 (18) 0.49057 (19) 0.0282 (6)
H4 0.097 (4) −0.176 (2) 0.513 (2) 0.034*
C1 −0.0637 (4) −0.1267 (2) 0.0321 (2) 0.0358 (7)
C2 0.0293 (4) 0.0502 (2) 0.1355 (2) 0.0321 (7)
C3 −0.4969 (4) −0.0695 (3) 0.3047 (2) 0.0441 (8)
H3A −0.5060 −0.1329 0.2655 0.066*
H3B −0.6212 −0.0410 0.2806 0.066*
H3C −0.4408 −0.0823 0.3842 0.066*
C4 −0.3767 (4) 0.0051 (2) 0.2793 (2) 0.0368 (8)
C5 −0.4462 (5) 0.0123 (3) 0.1536 (3) 0.0538 (10)
H5A −0.3779 0.0654 0.1371 0.081*
H5B −0.5788 0.0283 0.1181 0.081*
H5C −0.4261 −0.0524 0.1256 0.081*
C6 −0.1359 (4) −0.1309 (2) 0.3117 (2) 0.0368 (8)
H6A −0.1808 −0.1416 0.2316 0.044*
H6B −0.2009 −0.1791 0.3382 0.044*
C7 0.0699 (4) −0.1490 (2) 0.3712 (2) 0.0348 (7)
H7A 0.0977 −0.2197 0.3601 0.042*
H7B 0.1344 −0.1039 0.3413 0.042*
C8 0.4289 (5) −0.2269 (3) 0.5442 (3) 0.0530 (10)
H8A 0.3772 −0.2838 0.5674 0.080*
H8B 0.5634 −0.2242 0.5901 0.080*
H8C 0.4023 −0.2355 0.4668 0.080*
C9 0.3411 (4) −0.1285 (2) 0.5574 (2) 0.0348 (7)
H9 0.3932 −0.0713 0.5319 0.042*
C10 0.3891 (4) −0.1115 (2) 0.6794 (2) 0.0412 (8)
H10A 0.3070 −0.1558 0.6969 0.049*
H10B 0.5175 −0.1358 0.7238 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0380 (3) 0.0219 (3) 0.0229 (3) −0.0001 (2) 0.0188 (2) 0.0007 (2)
Ni2 0.0290 (3) 0.0228 (3) 0.0216 (3) 0.0012 (2) 0.0138 (2) 0.0004 (2)
O1 0.0416 (12) 0.0258 (12) 0.0265 (10) 0.0003 (11) 0.0195 (9) −0.0004 (10)
N1 0.093 (2) 0.0286 (16) 0.069 (2) −0.0054 (17) 0.0625 (19) −0.0004 (15)
N2 0.078 (2) 0.0434 (17) 0.0344 (14) −0.0084 (16) 0.0364 (15) −0.0043 (13)
N3 0.0293 (14) 0.0323 (15) 0.0234 (12) −0.0030 (11) 0.0134 (11) 0.0006 (10)
N4 0.0342 (15) 0.0242 (14) 0.0339 (13) 0.0020 (12) 0.0221 (11) 0.0032 (11)
C1 0.052 (2) 0.0330 (19) 0.0348 (16) 0.0011 (16) 0.0302 (16) −0.0012 (14)
C2 0.0469 (19) 0.0269 (18) 0.0293 (15) 0.0004 (15) 0.0232 (14) 0.0052 (13)
C3 0.0329 (18) 0.058 (2) 0.0374 (17) −0.0086 (17) 0.0117 (14) 0.0059 (16)
C4 0.0325 (17) 0.046 (2) 0.0281 (15) −0.0030 (16) 0.0100 (13) 0.0061 (14)
C5 0.048 (2) 0.076 (3) 0.0265 (16) −0.0072 (19) 0.0068 (15) 0.0096 (17)
C6 0.052 (2) 0.0327 (19) 0.0296 (15) −0.0100 (16) 0.0220 (15) −0.0087 (14)
C7 0.049 (2) 0.0287 (18) 0.0381 (17) 0.0009 (15) 0.0300 (15) −0.0054 (13)
C8 0.052 (2) 0.042 (2) 0.078 (3) 0.0205 (17) 0.040 (2) 0.0140 (18)
C9 0.0366 (18) 0.0316 (18) 0.0446 (17) 0.0071 (15) 0.0258 (15) 0.0087 (14)
C10 0.0329 (18) 0.048 (2) 0.0398 (17) 0.0071 (16) 0.0133 (14) 0.0166 (15)

Geometric parameters (Å, °)

Ni1—C1 1.863 (4) C3—H3B 0.9800
Ni1—C1i 1.863 (4) C3—H3C 0.9800
Ni1—C2i 1.867 (3) C4—C10ii 1.537 (5)
Ni1—C2 1.867 (3) C4—C5 1.541 (4)
Ni2—N4 2.067 (3) C5—H5A 0.9800
Ni2—N4ii 2.067 (3) C5—H5B 0.9800
Ni2—N3ii 2.099 (3) C5—H5C 0.9800
Ni2—N3 2.099 (3) C6—C7 1.505 (4)
Ni2—O1ii 2.179 (2) C6—H6A 0.9900
Ni2—O1 2.179 (2) C6—H6B 0.9900
O1—H1A 0.835 (10) C7—H7A 0.9900
O1—H1B 0.830 (10) C7—H7B 0.9900
N1—C1 1.146 (4) C8—C9 1.532 (4)
N2—C2 1.137 (3) C8—H8A 0.9800
N3—C6 1.482 (4) C8—H8B 0.9800
N3—C4 1.505 (4) C8—H8C 0.9800
N3—H3 0.88 (3) C9—C10 1.538 (4)
N4—C7 1.484 (4) C9—H9 1.0000
N4—C9 1.487 (4) C10—C4ii 1.537 (5)
N4—H4 0.81 (3) C10—H10A 0.9900
C3—C4 1.528 (4) C10—H10B 0.9900
C3—H3A 0.9800
C1—Ni1—C1i 180.0 (2) H3B—C3—H3C 109.5
C1—Ni1—C2i 88.96 (13) N3—C4—C3 111.6 (3)
C1i—Ni1—C2i 91.04 (13) N3—C4—C10ii 108.0 (2)
C1—Ni1—C2 91.04 (13) C3—C4—C10ii 111.1 (3)
C1i—Ni1—C2 88.96 (13) N3—C4—C5 109.2 (3)
C2i—Ni1—C2 180.0 (3) C3—C4—C5 109.6 (3)
N4—Ni2—N4ii 180.00 (14) C10ii—C4—C5 107.2 (3)
N4—Ni2—N3ii 94.74 (10) C4—C5—H5A 109.5
N4ii—Ni2—N3ii 85.26 (10) C4—C5—H5B 109.5
N4—Ni2—N3 85.26 (10) H5A—C5—H5B 109.5
N4ii—Ni2—N3 94.74 (10) C4—C5—H5C 109.5
N3ii—Ni2—N3 180.0 H5A—C5—H5C 109.5
N4—Ni2—O1ii 90.18 (10) H5B—C5—H5C 109.5
N4ii—Ni2—O1ii 89.82 (10) N3—C6—C7 109.3 (2)
N3ii—Ni2—O1ii 87.30 (10) N3—C6—H6A 109.8
N3—Ni2—O1ii 92.70 (10) C7—C6—H6A 109.8
N4—Ni2—O1 89.82 (10) N3—C6—H6B 109.8
N4ii—Ni2—O1 90.18 (10) C7—C6—H6B 109.8
N3ii—Ni2—O1 92.70 (10) H6A—C6—H6B 108.3
N3—Ni2—O1 87.30 (10) N4—C7—C6 109.2 (2)
O1ii—Ni2—O1 180.0 N4—C7—H7A 109.8
Ni2—O1—H1A 112 (2) C6—C7—H7A 109.8
Ni2—O1—H1B 116 (2) N4—C7—H7B 109.8
H1A—O1—H1B 98 (3) C6—C7—H7B 109.8
C6—N3—C4 116.5 (2) H7A—C7—H7B 108.3
C6—N3—Ni2 105.14 (17) C9—C8—H8A 109.5
C4—N3—Ni2 122.34 (18) C9—C8—H8B 109.5
C6—N3—H3 105.1 (19) H8A—C8—H8B 109.5
C4—N3—H3 106 (2) C9—C8—H8C 109.5
Ni2—N3—H3 99 (2) H8A—C8—H8C 109.5
C7—N4—C9 115.1 (2) H8B—C8—H8C 109.5
C7—N4—Ni2 105.86 (18) N4—C9—C8 111.8 (3)
C9—N4—Ni2 115.77 (19) N4—C9—C10 109.4 (2)
C7—N4—H4 105 (2) C8—C9—C10 110.1 (3)
C9—N4—H4 107 (2) N4—C9—H9 108.5
Ni2—N4—H4 107 (2) C8—C9—H9 108.5
N1—C1—Ni1 177.2 (3) C10—C9—H9 108.5
N2—C2—Ni1 178.0 (3) C4ii—C10—C9 120.0 (2)
C4—C3—H3A 109.5 C4ii—C10—H10A 107.3
C4—C3—H3B 109.5 C9—C10—H10A 107.3
H3A—C3—H3B 109.5 C4ii—C10—H10B 107.3
C4—C3—H3C 109.5 C9—C10—H10B 107.3
H3A—C3—H3C 109.5 H10A—C10—H10B 106.9

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···N1iii 0.81 (3) 2.46 (3) 3.250 (4) 164 (3)
N3—H3···N2 0.88 (3) 2.34 (3) 3.201 (4) 167 (3)
O1—H1B···N2 0.83 (1) 1.96 (1) 2.789 (4) 172 (3)
O1—H1A···N1iv 0.84 (1) 1.94 (1) 2.775 (4) 179 (3)

Symmetry codes: (iii) x, −y−1/2, z+1/2; (iv) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2863).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). SMART, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  3. Jiang, L., Feng, X. L., Su, C. Y., Chen, X. M. & Lu, T. B. (2007). Inorg. Chem.46, 2637–2644. [DOI] [PubMed]
  4. Jiang, L., Lu, T. B. & Feng, X. L. (2005). Inorg. Chem.44, 7056–7062. [DOI] [PubMed]
  5. Lescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev.249, 2691–2729.
  6. Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152–m1153. [DOI] [PMC free article] [PubMed]
  7. Ni, Z. H., Zhang, L. F., Ge, C. H., Cui, A. L., Kou, H. Z. & Jiang, J. Z. (2008). Inorg. Chem. Commun.11, 94–96.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xu, Y., Shen, X. P., Zhou, H., Shu, H. Q., Li, W. X. & Yuan, A. H. (2009). J. Mol. Struct.921, 341–345.
  10. Yamada, S. & Iwasaki, K. (1969). Bull. Chem. Soc. Jpn, 42, 1463.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033820/at2863sup1.cif

e-65-m1141-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033820/at2863Isup2.hkl

e-65-m1141-Isup2.hkl (124.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES