Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 19;65(Pt 9):o2188. doi: 10.1107/S1600536809031857

2-Amino-6-methyl-1,3-benzothia­zole–deca­nedioic acid (2/1)

Xiang-Jun Shi a, Zhi-Chao Wang a, Qiang Chen a, Xiao-Jun Zhao a,*
PMCID: PMC2970063  PMID: 21577592

Abstract

Co-crystallization of 2-amino-6-methyl-1,3-­benzothia­zole with deca­nedioic acid under hydro­thermal conditions afforded the title 2:1 co-crystal, 2C8H8N2S·C10H18O4. The deca­nedioic acid mol­ecule is located on an inversion centre. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect the components into a two-dimensional wave-like layer structure extending parallel to (100).

Related literature

For mol­ecular self-assembly and crystal engineering, see: Sun & Cui (2008); Hunter (1993); Yang et al. (2005). For the solid structures and properties of metal complexes of amino­benzothia­zole and its derivatives, see: Lynch et al. (1998, 1999); Sun & Cui (2008); Popović et al. (2002); Antiñolo et al. (2007); Dong et al. (2002); Chen et al. (2008); Zhang et al. (2009). For the structures of deca­nedioic acid-based metal complexes and co-crystals, see: Xian et al. (2009); Braga et al. (2006); Aakeröy et al. (2007).graphic file with name e-65-o2188-scheme1.jpg

Experimental

Crystal data

  • 2C8H8N2S·C10H18O4

  • M r = 530.71

  • Monoclinic, Inline graphic

  • a = 5.3791 (5) Å

  • b = 21.822 (2) Å

  • c = 11.9431 (11) Å

  • β = 91.6660 (10)°

  • V = 1401.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.931, T max = 0.952

  • 7545 measured reflections

  • 2470 independent reflections

  • 1822 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.05

  • 2470 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031857/bt5031sup1.cif

e-65-o2188-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031857/bt5031Isup2.hkl

e-65-o2188-Isup2.hkl (121.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.78 2.597 (2) 171
N2—H2A⋯O2 0.86 2.09 2.914 (2) 161
N2—H2B⋯O1i 0.86 2.14 2.954 (2) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support from Tianjin Normal University.

supplementary crystallographic information

Comment

During the past decades, molecular self-/assembly by classical coordination bonds and/or intermolecular non-covalent interactions such as hydrogen-bonding, π···π stacking, electrostatic interactions and so on, has been becoming more and more attractive in biology, biochemistry and new material fields (Sun et al., 2008; Hunter, 1993; Yang et al., 2005).

Acting as one of the excellent building blocks with multiple hydrogen-bonding sites and metal ion binding donors, aminobenzothiazole and its derivatives have been extensively utilized in the new materials, biochemistry and agriculture chemistry, due to the lower toxicity, high biological activity as well as excellent chemical reactivity (Lynch et al., 1998; Lynch et al., 1999; Sun et al., 2008; Popović et al., 2002; Antiñolo et al., 2007; Dong et al., 2002; Chen et al., 2008). On the other hand, the long decanedioic acid with adjustable deprotonated form and flexible aliphatic chain has also exhibited novel functions such as dianion templating (Xian et al., 2009) and heterosynthons with nitrogen-containing compounds (Braga et al., 2006; Aakeröy et al., 2007) in the fields of metal complexes and molecular co-crystals.

Thus, as a continuation of molecular assembly behavior in the solid state, in the present paper, the rigid 2-amino-6-methyl-1,3-benzothiazole (Ambt) and flexible decanedioic acid were selected as building blocks to cocrystallize. As a result, an intermolecular hydrogen bonded adduct, (I), was obtained under the hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit of (I) comprises one neutral Ambt molecule with no crystallographically imposed symmetry and half a decanedioic acid located on a centre of inversion. Obviously, no proton transfer was observed for the neutral cocrystal, which is much different from the 2-aminobenzothiazolium 2,4-dicarboxybenzoate monohydrate (Zhang et al., 2009). The exocyclic amino group of Ambt is roughly coplanar with the benzothiazole ring. Similarily, the carboxylic residues of decanedioic acid are also co-planar with their long aliphatic chain. In the packing structure of I, two pairs of the intermolecuar O1—H1 ···N1 and N2—H2A ···O2 hydrogen-bonding interactions (Table 1) connect the two Ambt molecules and one decanedioic acid.

Experimental

To an aqueous solution of Ambt (40.4 mg, 0.2 mmol) was slowly added an aqueous solution of decanedioic acid (20.2 mg, 0.1 mmol) with constant stirring. After further stirring for about ten minutes, the resulting mixture was sealed in a stainless steel vessel and heated at 140 oC for 3 days. After the mixture was cooled to room temperature at a rate of 5 oC / h, pale-yellow block-shaped crystals suitable for X-ray diffraction were obtained directly, washed with ethanol and dried in air.Yield: 34% based on Ambt. Anal. calcd for C13H17N2O2S: C, 58.84; H, 6.46; N, 10.56%. Found: C, 58.78; H, 6.56; N,10.70%.

Refinement

H-atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å. all H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H)] = 1.2 Ueq (C, N, O)

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawnat the 30% probability level. The dashed lines indicate intermolecular hydrogen bonds.[Symmetry code: (A) 4 – x, 1 – y, – z]

Fig. 2.

Fig. 2.

The two-dimensional layer of (I) formed by N–H···O and O–H ···O hydrogen bonding interactions.

Crystal data

2C8H8N2S·C10H18O4 F(000) = 564
Mr = 530.71 Dx = 1.258 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.3791 (5) Å Cell parameters from 1765 reflections
b = 21.822 (2) Å θ = 2.5–22.8°
c = 11.9431 (11) Å µ = 0.23 mm1
β = 91.666 (1)° T = 293 K
V = 1401.3 (2) Å3 Block, pale-yellow
Z = 2 0.32 × 0.24 × 0.22 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2470 independent reflections
Radiation source: fine-focus sealed tube 1822 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.931, Tmax = 0.952 k = −25→21
7545 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.3107P] where P = (Fo2 + 2Fc2)/3
2470 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.47667 (11) 0.17050 (3) 0.20230 (5) 0.0647 (2)
O1 1.1513 (3) 0.27012 (7) −0.03449 (11) 0.0595 (4)
H1 1.0456 0.2531 0.0026 0.089*
O2 1.2105 (3) 0.32343 (7) 0.12223 (12) 0.0662 (4)
N1 0.8009 (3) 0.21067 (7) 0.06387 (13) 0.0502 (4)
N2 0.8217 (3) 0.25824 (8) 0.23838 (14) 0.0628 (5)
H2A 0.9420 0.2815 0.2189 0.075*
H2B 0.7643 0.2610 0.3046 0.075*
C1 0.7248 (4) 0.21790 (9) 0.16608 (16) 0.0495 (5)
C2 0.4781 (4) 0.13827 (9) 0.06865 (17) 0.0536 (5)
C3 0.3269 (4) 0.09285 (10) 0.02272 (19) 0.0658 (6)
H3A 0.2024 0.0754 0.0648 0.079*
C4 0.3619 (4) 0.07353 (10) −0.0861 (2) 0.0647 (6)
C5 0.5474 (4) 0.10135 (11) −0.14663 (18) 0.0650 (6)
H5A 0.5703 0.0889 −0.2201 0.078*
C6 0.6984 (4) 0.14661 (10) −0.10228 (17) 0.0599 (6)
H6A 0.8214 0.1643 −0.1449 0.072*
C7 0.6645 (4) 0.16541 (9) 0.00673 (16) 0.0488 (5)
C8 0.1999 (6) 0.02374 (13) −0.1383 (2) 0.0920 (9)
H8A 0.0819 0.0101 −0.0850 0.138*
H8B 0.3023 −0.0101 −0.1597 0.138*
H8C 0.1130 0.0397 −0.2033 0.138*
C9 1.2624 (4) 0.31276 (9) 0.02632 (16) 0.0469 (5)
C10 1.4559 (4) 0.34752 (9) −0.03539 (16) 0.0511 (5)
H10A 1.3758 0.3681 −0.0987 0.061*
H10B 1.5740 0.3185 −0.0648 0.061*
C11 1.5968 (4) 0.39443 (9) 0.03408 (16) 0.0509 (5)
H11A 1.6931 0.3735 0.0924 0.061*
H11B 1.4788 0.4210 0.0701 0.061*
C12 1.7698 (4) 0.43316 (9) −0.03430 (17) 0.0517 (5)
H12A 1.8855 0.4064 −0.0713 0.062*
H12B 1.6726 0.4544 −0.0920 0.062*
C13 1.9159 (4) 0.47985 (9) 0.03387 (16) 0.0511 (5)
H13A 2.0164 0.4585 0.0901 0.061*
H13B 1.8000 0.5058 0.0727 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0678 (4) 0.0744 (4) 0.0529 (3) −0.0197 (3) 0.0191 (3) 0.0042 (3)
O1 0.0673 (10) 0.0637 (9) 0.0484 (8) −0.0271 (7) 0.0198 (7) −0.0071 (7)
O2 0.0763 (11) 0.0750 (10) 0.0484 (8) −0.0275 (8) 0.0207 (7) −0.0107 (7)
N1 0.0517 (10) 0.0565 (10) 0.0428 (9) −0.0120 (8) 0.0086 (7) 0.0036 (7)
N2 0.0740 (13) 0.0691 (12) 0.0460 (9) −0.0193 (10) 0.0129 (9) −0.0042 (9)
C1 0.0512 (12) 0.0513 (11) 0.0464 (11) −0.0036 (9) 0.0074 (9) 0.0084 (9)
C2 0.0538 (12) 0.0549 (12) 0.0524 (11) −0.0087 (10) 0.0061 (9) 0.0091 (10)
C3 0.0606 (14) 0.0675 (14) 0.0695 (14) −0.0214 (12) 0.0070 (11) 0.0113 (12)
C4 0.0671 (15) 0.0618 (13) 0.0646 (14) −0.0132 (12) −0.0080 (11) 0.0024 (11)
C5 0.0712 (15) 0.0740 (15) 0.0497 (12) −0.0096 (12) −0.0002 (11) −0.0010 (11)
C6 0.0615 (14) 0.0691 (14) 0.0495 (12) −0.0136 (11) 0.0063 (10) 0.0034 (10)
C7 0.0482 (12) 0.0515 (11) 0.0465 (11) −0.0050 (9) 0.0012 (9) 0.0087 (9)
C8 0.097 (2) 0.0889 (19) 0.0893 (18) −0.0331 (17) −0.0044 (16) −0.0102 (16)
C9 0.0476 (12) 0.0457 (11) 0.0477 (11) −0.0043 (9) 0.0069 (9) 0.0008 (9)
C10 0.0518 (12) 0.0497 (11) 0.0525 (12) −0.0099 (9) 0.0122 (9) −0.0013 (9)
C11 0.0491 (12) 0.0511 (12) 0.0527 (11) −0.0076 (9) 0.0057 (9) 0.0029 (9)
C12 0.0474 (12) 0.0519 (12) 0.0561 (12) −0.0085 (9) 0.0078 (9) −0.0001 (9)
C13 0.0482 (12) 0.0515 (12) 0.0538 (11) −0.0069 (9) 0.0053 (9) 0.0040 (9)

Geometric parameters (Å, °)

S1—C2 1.744 (2) C6—C7 1.382 (3)
S1—C1 1.753 (2) C6—H6A 0.9300
O1—C9 1.313 (2) C8—H8A 0.9600
O1—H1 0.8200 C8—H8B 0.9600
O2—C9 1.209 (2) C8—H8C 0.9600
N1—C1 1.308 (2) C9—C10 1.499 (3)
N1—C7 1.397 (2) C10—C11 1.508 (3)
N2—C1 1.329 (2) C10—H10A 0.9700
N2—H2A 0.8600 C10—H10B 0.9700
N2—H2B 0.8600 C11—C12 1.514 (3)
C2—C3 1.385 (3) C11—H11A 0.9700
C2—C7 1.395 (3) C11—H11B 0.9700
C3—C4 1.385 (3) C12—C13 1.510 (3)
C3—H3A 0.9300 C12—H12A 0.9700
C4—C5 1.388 (3) C12—H12B 0.9700
C4—C8 1.516 (3) C13—C13i 1.513 (4)
C5—C6 1.375 (3) C13—H13A 0.9700
C5—H5A 0.9300 C13—H13B 0.9700
C2—S1—C1 89.34 (9) C4—C8—H8C 109.5
C9—O1—H1 109.5 H8A—C8—H8C 109.5
C1—N1—C7 111.53 (16) H8B—C8—H8C 109.5
C1—N2—H2A 120.0 O2—C9—O1 123.13 (17)
C1—N2—H2B 120.0 O2—C9—C10 123.42 (18)
H2A—N2—H2B 120.0 O1—C9—C10 113.44 (16)
N1—C1—N2 123.95 (18) C9—C10—C11 114.71 (16)
N1—C1—S1 114.85 (15) C9—C10—H10A 108.6
N2—C1—S1 121.18 (15) C11—C10—H10A 108.6
C3—C2—C7 121.1 (2) C9—C10—H10B 108.6
C3—C2—S1 129.25 (16) C11—C10—H10B 108.6
C7—C2—S1 109.65 (15) H10A—C10—H10B 107.6
C4—C3—C2 119.7 (2) C10—C11—C12 112.90 (16)
C4—C3—H3A 120.2 C10—C11—H11A 109.0
C2—C3—H3A 120.2 C12—C11—H11A 109.0
C3—C4—C5 118.4 (2) C10—C11—H11B 109.0
C3—C4—C8 120.8 (2) C12—C11—H11B 109.0
C5—C4—C8 120.8 (2) H11A—C11—H11B 107.8
C6—C5—C4 122.6 (2) C13—C12—C11 113.84 (16)
C6—C5—H5A 118.7 C13—C12—H12A 108.8
C4—C5—H5A 118.7 C11—C12—H12A 108.8
C5—C6—C7 118.9 (2) C13—C12—H12B 108.8
C5—C6—H6A 120.6 C11—C12—H12B 108.8
C7—C6—H6A 120.6 H12A—C12—H12B 107.7
C6—C7—C2 119.34 (19) C12—C13—C13i 114.4 (2)
C6—C7—N1 126.03 (18) C12—C13—H13A 108.7
C2—C7—N1 114.63 (17) C13i—C13—H13A 108.7
C4—C8—H8A 109.5 C12—C13—H13B 108.7
C4—C8—H8B 109.5 C13i—C13—H13B 108.7
H8A—C8—H8B 109.5 H13A—C13—H13B 107.6
C7—N1—C1—N2 −179.62 (19) C5—C6—C7—C2 −0.2 (3)
C7—N1—C1—S1 −0.5 (2) C5—C6—C7—N1 −179.8 (2)
C2—S1—C1—N1 0.29 (17) C3—C2—C7—C6 0.0 (3)
C2—S1—C1—N2 179.42 (18) S1—C2—C7—C6 −179.96 (17)
C1—S1—C2—C3 −180.0 (2) C3—C2—C7—N1 179.69 (19)
C1—S1—C2—C7 0.02 (16) S1—C2—C7—N1 −0.3 (2)
C7—C2—C3—C4 0.5 (3) C1—N1—C7—C6 −179.8 (2)
S1—C2—C3—C4 −179.45 (19) C1—N1—C7—C2 0.5 (3)
C2—C3—C4—C5 −0.9 (4) O2—C9—C10—C11 4.3 (3)
C2—C3—C4—C8 179.8 (2) O1—C9—C10—C11 −176.76 (17)
C3—C4—C5—C6 0.8 (4) C9—C10—C11—C12 −173.70 (17)
C8—C4—C5—C6 −179.9 (2) C10—C11—C12—C13 −179.12 (17)
C4—C5—C6—C7 −0.2 (4) C11—C12—C13—C13i −178.3 (2)

Symmetry codes: (i) −x+4, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.78 2.597 (2) 171
N2—H2A···O2 0.86 2.09 2.914 (2) 161
N2—H2B···O1ii 0.86 2.14 2.954 (2) 157

Symmetry codes: (ii) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5031).

References

  1. Aakeröy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46–54.
  2. Antiñolo, A., García-Yuste, S., Otero, A., Pérez-Flores, J. C., López-Solera, I. & Rodríguez, A. M. (2007). J. Organomet. Chem.692, 3328–3339.
  3. Braga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877–3879. [DOI] [PubMed]
  4. Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem.12, 1951–1962.
  8. Dong, H. S., Quan, B. & Tian, H. Q. (2002). J Mol Struct 641, 147–152.
  9. Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl.32, 1584–1586.
  10. Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem.52, 695–703.
  11. Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem.51, 587–592.
  12. Popović, Z., Pavlović, G., Soldin, Ž., Tralić-Kulenović, V. & Racané, L. (2003). Acta Cryst. C59, m4–m6. [DOI] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem.27, 1526–1532.
  16. Xian, H. D., Li, H. Q., Shi, X., Liu, J. F. & Zhao, G. L. (2009). Inorg. Chem. Commun.12, 177–180.
  17. Yang, X. D., Wu, D. Q., Ranford, J. D. & Vittal, J. J. (2005). Cryst. Growth Des.5, 41–43.
  18. Zhang, N., Liu, K.-S. & Zhao, X.-J. (2009). Acta Cryst. E65, o1398. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031857/bt5031sup1.cif

e-65-o2188-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031857/bt5031Isup2.hkl

e-65-o2188-Isup2.hkl (121.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES