Abstract
The structure of the title compound, C7H9NO2S, was previously determined from powder diffraction data [Tremayne, Seaton & Glidewell (2002). Acta Cryst. B58, 823–834]. It has now been refined to a significantly higher precision. The amino N-atom is bent with a C—C—S—N torsion angle of −65.8 (2)deg;. In the crystal, molecules are packed into a three-dimensional framework/supramolecular structure through hydrogen bonds between the two H atoms of the sulfonamide group and sulfonyl O atoms of neighbouring molecules.
Related literature
For our studies of the effect of substituents on the solid state structures of sulfonamides, see: Gowda et al. (2003 ▶, 2009 ▶); Gowda, Srilatha et al. (2007 ▶). For the parent benzenesulfonamide, see: Gowda, Nayak et al. (2007 ▶). For other aryl sulfonamides, see: Gowda et al. (2003 ▶, 2009 ▶); Gowda, Srilatha et al. (2007 ▶); Jones & Weinkauf (1993 ▶); Kumar et al. (1992 ▶); O’Connor & Maslen (1965 ▶). For the powder structure of the title compound, see: Tremayne et al. (2002 ▶).
Experimental
Crystal data
C7H9NO2S
M r = 171.21
Tetragonal,
a = 18.670 (3) Å
c = 9.057 (1) Å
V = 3157.0 (8) Å3
Z = 16
Cu Kα radiation
μ = 3.24 mm−1
T = 299 K
0.40 × 0.35 × 0.02 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.324, T max = 0.938
5320 measured reflections
1403 independent reflections
1290 reflections with I > 2σ(I)
R int = 0.059
3 standard reflections frequency: 120 min intensity decay: 1.5%
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.101
S = 1.07
1403 reflections
108 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.28 e Å−3
Δρmin = −0.41 e Å−3
Data collection: CAD-4-PC (Enraf–Nonius, 1996 ▶); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033686/fl2262sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033686/fl2262Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H11⋯O2i | 0.839 (16) | 2.193 (18) | 3.003 (2) | 162 (2) |
| N1—H12⋯O1ii | 0.841 (16) | 2.138 (17) | 2.964 (2) | 167 (2) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.
supplementary crystallographic information
Comment
The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides exhibit pharmacological, fungicidal and herbicidal activities. In the present work, the structure of (I) has been determined as part of our work to explore the effect of substituents on the solid state structures of sulfonamides (Gowda et al., 2003, 2009; Gowda, Srilatha et al., 2007).
The structure of (I) solved from X-ray powder data has been reported (Tremayne et al., 2002) and the present single-crystal X-ray study confirms the powder diffraction structural parameters. (I) crystallizes in the tetragonal I 41/a space group, in contrast to the monoclinic Pc space group observed with the parent benzenesulfonamide (BSA)(Gowda, Nayak et al., 2007), the monoclinic cc space group for 2-chlorobenzenesulfonamide (2CBSA)(Gowda et al., 2009), the orthorhombic Pbca space group for both 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965), and the monoclinic P21/n space group for both 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). The orientation of the amino group with respect to the ring is given by the C–C–S–N torsional angle of -65.8 (2)°, compared to the values of -78.1 (10)° for BSA and 64.0 (2)° for 2CBSA. In (I), the molecules are packed into layers paralel to the b-axis through N1—H11···O1(S) and N1—H12···O2(S) intermolecular hydrogen bonding (Table 1 & Fig.2).
Experimental
The purity of the commmercial sample (TCI, Tokyo) was checked and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown from ethanol by a slow evaporation of the solvent at room temperature.
Refinement
The H atoms of the NH2 group were located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Figures
Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.
Crystal data
| C7H9NO2S | Dx = 1.441 Mg m−3 |
| Mr = 171.21 | Cu Kα radiation, λ = 1.54180 Å |
| Tetragonal, I41/a | Cell parameters from 25 reflections |
| Hall symbol: -I 4ad | θ = 4.7–17.9° |
| a = 18.670 (3) Å | µ = 3.24 mm−1 |
| c = 9.057 (1) Å | T = 299 K |
| V = 3157.0 (8) Å3 | Prism, colourless |
| Z = 16 | 0.40 × 0.35 × 0.02 mm |
| F(000) = 1440 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 1290 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.059 |
| graphite | θmax = 66.8°, θmin = 4.7° |
| ω/2θ scans | h = −22→22 |
| Absorption correction: ψ scan (North et al., 1968) | k = −22→22 |
| Tmin = 0.324, Tmax = 0.938 | l = −10→0 |
| 5320 measured reflections | 3 standard reflections every 120 min |
| 1403 independent reflections | intensity decay: 1.5% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0529P)2 + 2.2812P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max = 0.001 |
| 1403 reflections | Δρmax = 0.28 e Å−3 |
| 108 parameters | Δρmin = −0.41 e Å−3 |
| 2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00227 (18) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.13337 (2) | 0.12556 (2) | 0.26312 (5) | 0.0365 (2) | |
| O1 | 0.20600 (8) | 0.10124 (10) | 0.24990 (15) | 0.0543 (5) | |
| O2 | 0.11947 (10) | 0.20074 (8) | 0.25836 (16) | 0.0612 (5) | |
| N1 | 0.09068 (10) | 0.08933 (10) | 0.13117 (18) | 0.0454 (4) | |
| H11 | 0.0510 (10) | 0.1073 (12) | 0.108 (3) | 0.054* | |
| H12 | 0.1053 (12) | 0.0484 (10) | 0.107 (3) | 0.054* | |
| C1 | 0.10065 (9) | 0.09226 (9) | 0.43325 (19) | 0.0329 (4) | |
| C2 | 0.03095 (11) | 0.10630 (10) | 0.4810 (2) | 0.0395 (5) | |
| C3 | 0.01179 (12) | 0.07885 (12) | 0.6185 (2) | 0.0522 (5) | |
| H3 | −0.0341 | 0.0873 | 0.6542 | 0.063* | |
| C4 | 0.05868 (14) | 0.03960 (13) | 0.7032 (2) | 0.0575 (6) | |
| H4 | 0.0441 | 0.0222 | 0.7946 | 0.069* | |
| C5 | 0.12671 (13) | 0.02595 (13) | 0.6539 (2) | 0.0545 (6) | |
| H5 | 0.1583 | −0.0007 | 0.7113 | 0.065* | |
| C6 | 0.14805 (11) | 0.05211 (11) | 0.5179 (2) | 0.0430 (5) | |
| H6 | 0.1940 | 0.0429 | 0.4832 | 0.052* | |
| C7 | −0.02347 (13) | 0.14733 (13) | 0.3939 (3) | 0.0609 (6) | |
| H7A | −0.0344 | 0.1218 | 0.3047 | 0.073* | |
| H7B | −0.0046 | 0.1937 | 0.3695 | 0.073* | |
| H7C | −0.0663 | 0.1529 | 0.4515 | 0.073* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0422 (3) | 0.0384 (3) | 0.0289 (3) | −0.00894 (17) | −0.00042 (16) | 0.00272 (16) |
| O1 | 0.0375 (8) | 0.0865 (12) | 0.0388 (8) | −0.0106 (7) | 0.0015 (6) | 0.0054 (7) |
| O2 | 0.1032 (14) | 0.0364 (8) | 0.0441 (9) | −0.0154 (8) | 0.0039 (8) | 0.0066 (6) |
| N1 | 0.0483 (10) | 0.0500 (10) | 0.0378 (9) | 0.0088 (8) | −0.0116 (7) | −0.0078 (7) |
| C1 | 0.0401 (10) | 0.0305 (8) | 0.0281 (8) | −0.0057 (7) | −0.0005 (7) | −0.0006 (7) |
| C2 | 0.0427 (11) | 0.0357 (10) | 0.0401 (10) | −0.0035 (8) | 0.0019 (8) | −0.0061 (7) |
| C3 | 0.0541 (13) | 0.0591 (13) | 0.0435 (11) | −0.0101 (10) | 0.0151 (9) | −0.0081 (9) |
| C4 | 0.0769 (16) | 0.0612 (14) | 0.0345 (10) | −0.0178 (12) | 0.0063 (10) | 0.0060 (10) |
| C5 | 0.0673 (15) | 0.0549 (13) | 0.0413 (12) | −0.0066 (10) | −0.0086 (10) | 0.0160 (9) |
| C6 | 0.0445 (11) | 0.0439 (11) | 0.0405 (10) | −0.0014 (8) | −0.0025 (8) | 0.0056 (8) |
| C7 | 0.0474 (12) | 0.0632 (14) | 0.0721 (16) | 0.0123 (11) | 0.0017 (11) | 0.0027 (12) |
Geometric parameters (Å, °)
| S1—O2 | 1.4281 (16) | C3—C4 | 1.375 (4) |
| S1—O1 | 1.4349 (16) | C3—H3 | 0.9300 |
| S1—N1 | 1.5877 (17) | C4—C5 | 1.370 (3) |
| S1—C1 | 1.7703 (17) | C4—H4 | 0.9300 |
| N1—H11 | 0.839 (16) | C5—C6 | 1.384 (3) |
| N1—H12 | 0.841 (16) | C5—H5 | 0.9300 |
| C1—C6 | 1.390 (3) | C6—H6 | 0.9300 |
| C1—C2 | 1.396 (3) | C7—H7A | 0.9600 |
| C2—C3 | 1.394 (3) | C7—H7B | 0.9600 |
| C2—C7 | 1.497 (3) | C7—H7C | 0.9600 |
| O2—S1—O1 | 118.70 (11) | C2—C3—H3 | 119.0 |
| O2—S1—N1 | 107.74 (10) | C5—C4—C3 | 120.5 (2) |
| O1—S1—N1 | 106.07 (9) | C5—C4—H4 | 119.8 |
| O2—S1—C1 | 107.98 (9) | C3—C4—H4 | 119.8 |
| O1—S1—C1 | 106.72 (8) | C4—C5—C6 | 119.4 (2) |
| N1—S1—C1 | 109.41 (9) | C4—C5—H5 | 120.3 |
| S1—N1—H11 | 117.3 (17) | C6—C5—H5 | 120.3 |
| S1—N1—H12 | 114.9 (17) | C5—C6—C1 | 119.9 (2) |
| H11—N1—H12 | 126 (2) | C5—C6—H6 | 120.1 |
| C6—C1—C2 | 121.59 (17) | C1—C6—H6 | 120.1 |
| C6—C1—S1 | 116.72 (15) | C2—C7—H7A | 109.5 |
| C2—C1—S1 | 121.69 (14) | C2—C7—H7B | 109.5 |
| C3—C2—C1 | 116.55 (19) | H7A—C7—H7B | 109.5 |
| C3—C2—C7 | 119.0 (2) | C2—C7—H7C | 109.5 |
| C1—C2—C7 | 124.44 (19) | H7A—C7—H7C | 109.5 |
| C4—C3—C2 | 122.1 (2) | H7B—C7—H7C | 109.5 |
| C4—C3—H3 | 119.0 | ||
| O2—S1—C1—C6 | −128.04 (16) | S1—C1—C2—C7 | 2.5 (3) |
| O1—S1—C1—C6 | 0.61 (17) | C1—C2—C3—C4 | −0.3 (3) |
| N1—S1—C1—C6 | 114.96 (15) | C7—C2—C3—C4 | 178.8 (2) |
| O2—S1—C1—C2 | 51.23 (17) | C2—C3—C4—C5 | −0.2 (3) |
| O1—S1—C1—C2 | 179.89 (15) | C3—C4—C5—C6 | 0.1 (4) |
| N1—S1—C1—C2 | −65.77 (17) | C4—C5—C6—C1 | 0.4 (3) |
| C6—C1—C2—C3 | 0.9 (3) | C2—C1—C6—C5 | −0.9 (3) |
| S1—C1—C2—C3 | −178.38 (14) | S1—C1—C6—C5 | 178.33 (17) |
| C6—C1—C2—C7 | −178.2 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H11···O2i | 0.84 (2) | 2.19 (2) | 3.003 (2) | 162 (2) |
| N1—H12···O1ii | 0.84 (2) | 2.14 (2) | 2.964 (2) | 167 (2) |
Symmetry codes: (i) y−1/4, −x+1/4, −z+1/4; (ii) −y+1/4, x−1/4, z−1/4.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2262).
References
- Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
- Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2144. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
- Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.
- Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424.
- Jones, P. G. & Weinkauf, A. (1993). Z. Kristallogr.208, 128–129.
- Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr.202, 1–6.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- O’Connor, B. H. & Maslen, E. N. (1965). Acta Cryst.18, 363–366.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.
- Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823–834. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033686/fl2262sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033686/fl2262Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


