Abstract
The title compound, C18H10O4, has been isolated as an impurity in commercially available 6,11-dihydroxy-5,12-naphthacenedione. The title compound exhibits yellow fluorescence in the solid state. The molecule has crystallographic inversion symmetry and is planar, with an r.m.s. deviation of 0.031 (1) Å. The crystal structure is stabilized by C—H⋯O hydrogen bonds and π–π stacking interactions between 3-methyleneisobenzofuran-1(3H)-one units [interplanar distance 3.43 (1) Å].
Related literature
For the crystallographic analysis and functionalization of 6,11-dihydroxy-5,12-naphthacenedione, see: Tomura et al. (2008 ▶); Ono et al. (2009 ▶). For the synthesis of the title compound, see: Ji et al. (2006 ▶).
Experimental
Crystal data
C18H10O4
M r = 290.26
Triclinic,
a = 6.9030 (13) Å
b = 7.0374 (16) Å
c = 7.7792 (13) Å
α = 112.190 (5)°
β = 95.696 (2)°
γ = 107.239 (8)°
V = 324.53 (11) Å3
Z = 1
Mo Kα radiation
μ = 0.11 mm−1
T = 173 K
1.00 × 0.50 × 0.40 mm
Data collection
Rigaku/MSC Mercury CCD diffractometer
Absorption correction: none
2656 measured reflections
1661 independent reflections
1323 reflections with I > 2σ(I)
R int = 0.044
Refinement
R[F 2 > 2σ(F 2)] = 0.066
wR(F 2) = 0.176
S = 0.97
1661 reflections
100 parameters
H-atom parameters constrained
Δρmax = 0.35 e Å−3
Δρmin = −0.28 e Å−3
Data collection: CrystalClear (Rigaku/MSC, 2006 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030888/bt5025sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030888/bt5025Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C3—H3⋯O2i | 0.95 | 2.70 | 3.459 (2) | 137 |
C5—H5⋯O1ii | 0.95 | 2.66 | 3.406 (2) | 136 |
C6—H6⋯O2iii | 0.95 | 2.71 | 3.4700 (19) | 138 |
C9—H9⋯O2iii | 0.95 | 2.55 | 3.3209 (18) | 139 |
Symmetry codes: (i) ; (ii)
; (iii)
.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research (grant No. 20550037) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.
supplementary crystallographic information
Comment
Through the study of the crystallographic analysis and functionalities of 6,11-dihydroxy-5,12-naphthacenedione (Tomura et al., 2008; Ono et al., 2009), we found the existence of a yellow fluorescent compound as a by-product in the commercially available chemical reagent. After the separation of the by-product, the structure was determined to be the title compound, (I). Although the synthesis of (I) was already reported (Ji et al., 2006), the characterization has not been performed. In this paper, we report the separation, spectral data, and molecular and crystal structures of (I).
The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric and planar with an r.m.s. deviation of 0.031 (1) Å. The distances of the C9—C9 (-x + 1, -y, -z + 1) and C8—C9 bonds are 1.433 (3) and 1.345 (2) Å, respectively, indicating a butadiene skeleton. The bond length of C1—O2 [1.201 (2) Å] is reasonable for carbonyl group. Further, the O1—C1 and O1—C8 bonds result in O—C single bonds with a bond distance of 1.394 (2) Å. These bond distances support the molecular structure of (I).
In the crystal structure, the molecules are linked to each other through intermolecular C—H···O interactions (Table 1). The molecular arrangements shown in Figs. 2 and 3 run stepwise along the b and c axes, respectively. Fig. 4 also exhibits a stepwise arrangement along the (021) direction with C—H···O contacts. Furthermore, the 3-methyleneisobenzofuran-1(3H)-one rings overlap each other to form a π-stacking structure with an interplanar distance of 3.43 Å, as shown in Fig. 5.
Experimental
The commercially available 6,11-dihydroxy-5,12-naphthacenedione (100 mg, Aldrich) was recrystallized from ethyl acetate (280 ml) to afford pure red crystals of 6,11-dihydroxy-5,12-naphthacenedione (70 mg). The filtrate containing the title compound, (I) was concentrated, and the residue (25 mg) was dissolved in toluene (100 ml). The solution was washed with 1 M NaOH solutions (100 ml) ten times over until the NaOH solution was colorless. The organic solution was dried over Na2SO4 and concentrated to provide a yellow solid of (I) (ca 9% yield). Yellow prisms of the title compound, suitable for X-ray analysis were grown from a dichloromethane solution.
Refinement
All H atoms were placed in geometrically calculated positions, with C—H = 0.95 (aromatic) Å and Uiso(H) = 1.2Ueq(C) (aromatic), and refined using a riding model.
Figures
Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Aggregation along the b axis with C—H···O contacts.
Fig. 3.
Aggregation along the c axis with C—H···O contacts.
Fig. 4.
Aggregation along the (021) direction with C—H···O contacts.
Fig. 5.
π-Stacking structure with an interplanar distance of 3.43 Å.
Crystal data
C18H10O4 | Z = 1 |
Mr = 290.26 | F(000) = 150 |
Triclinic, P1 | Dx = 1.485 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9030 (13) Å | Cell parameters from 1131 reflections |
b = 7.0374 (16) Å | θ = 4.8–30.8° |
c = 7.7792 (13) Å | µ = 0.11 mm−1 |
α = 112.190 (5)° | T = 173 K |
β = 95.696 (2)° | Prism, yellow |
γ = 107.239 (8)° | 1.00 × 0.50 × 0.40 mm |
V = 324.53 (11) Å3 |
Data collection
Rigaku/MSC Mercury CCD diffractometer | 1323 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.044 |
Graphite Monochromator | θmax = 30.8°, θmin = 3.7° |
Detector resolution: 14.62 pixels mm-1 | h = −9→9 |
φ and ω scans | k = −9→5 |
2656 measured reflections | l = −7→10 |
1661 independent reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.176 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.1211P)2] where P = (Fo2 + 2Fc2)/3 |
1661 reflections | (Δ/σ)max < 0.001 |
100 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Special details
Experimental. IR (KBr, cm-1): 1784, 1645, 1472, 1343, 1281, 1073, 974, 766, 689; 1H NMR (CDCl3, δ p.p.m.): 6.86 (s, 2H), 7.60 (t, J = 7.6 Hz, 2H), 7.77 (t, J = 7.6 Hz, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.96 (d, J = 7.6 Hz, 2H); MS (EI): m/z 290 (M+), 104; UV-vis (CH2Cl2, nm): 406, 383. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.7382 (2) | 0.6230 (2) | 0.8120 (2) | 0.0242 (4) | |
C2 | 0.7695 (2) | 0.5873 (2) | 0.9849 (2) | 0.0216 (4) | |
C3 | 0.8463 (2) | 0.7402 (2) | 1.1749 (2) | 0.0285 (4) | |
H3 | 0.8898 | 0.8939 | 1.2100 | 0.034* | |
C4 | 0.8568 (2) | 0.6597 (3) | 1.3105 (2) | 0.0320 (4) | |
H4 | 0.9049 | 0.7593 | 1.4421 | 0.038* | |
C5 | 0.7974 (2) | 0.4324 (3) | 1.2568 (2) | 0.0310 (4) | |
H5 | 0.8079 | 0.3814 | 1.3531 | 0.037* | |
C6 | 0.7236 (2) | 0.2804 (2) | 1.0665 (2) | 0.0267 (4) | |
H6 | 0.6859 | 0.1271 | 1.0308 | 0.032* | |
C7 | 0.7070 (2) | 0.3616 (2) | 0.9299 (2) | 0.0204 (3) | |
C8 | 0.6284 (2) | 0.2534 (2) | 0.7233 (2) | 0.0207 (3) | |
C9 | 0.5404 (2) | 0.0392 (2) | 0.6005 (2) | 0.0223 (4) | |
H9 | 0.5313 | −0.0668 | 0.6501 | 0.027* | |
O1 | 0.65059 (16) | 0.41594 (15) | 0.65779 (15) | 0.0248 (3) | |
O2 | 0.77382 (19) | 0.78743 (17) | 0.78771 (18) | 0.0364 (4) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0231 (7) | 0.0198 (7) | 0.0242 (8) | 0.0061 (6) | 0.0010 (6) | 0.0061 (6) |
C2 | 0.0187 (6) | 0.0193 (7) | 0.0207 (7) | 0.0044 (5) | 0.0025 (5) | 0.0046 (5) |
C3 | 0.0263 (8) | 0.0231 (7) | 0.0245 (8) | 0.0056 (6) | 0.0027 (6) | 0.0016 (6) |
C4 | 0.0296 (8) | 0.0343 (9) | 0.0180 (8) | 0.0048 (7) | 0.0024 (6) | 0.0027 (6) |
C5 | 0.0287 (8) | 0.0389 (9) | 0.0197 (8) | 0.0053 (7) | 0.0045 (6) | 0.0125 (7) |
C6 | 0.0252 (7) | 0.0270 (7) | 0.0234 (8) | 0.0050 (6) | 0.0038 (6) | 0.0101 (6) |
C7 | 0.0176 (7) | 0.0207 (7) | 0.0188 (7) | 0.0050 (5) | 0.0031 (5) | 0.0059 (5) |
C8 | 0.0209 (7) | 0.0205 (7) | 0.0185 (7) | 0.0070 (5) | 0.0017 (5) | 0.0072 (5) |
C9 | 0.0221 (7) | 0.0197 (7) | 0.0208 (8) | 0.0058 (5) | 0.0009 (5) | 0.0066 (6) |
O1 | 0.0294 (6) | 0.0188 (5) | 0.0205 (6) | 0.0055 (4) | −0.0005 (4) | 0.0063 (4) |
O2 | 0.0436 (7) | 0.0221 (6) | 0.0382 (7) | 0.0073 (5) | −0.0006 (5) | 0.0136 (5) |
Geometric parameters (Å, °)
C1—O2 | 1.2007 (18) | C5—C6 | 1.388 (2) |
C1—O1 | 1.3935 (17) | C5—H5 | 0.9500 |
C1—C2 | 1.465 (2) | C6—C7 | 1.393 (2) |
C2—C3 | 1.389 (2) | C6—H6 | 0.9500 |
C2—C7 | 1.3914 (18) | C7—C8 | 1.4543 (19) |
C3—C4 | 1.378 (2) | C8—C9 | 1.3447 (19) |
C3—H3 | 0.9500 | C8—O1 | 1.3944 (17) |
C4—C5 | 1.405 (2) | C9—C9i | 1.433 (3) |
C4—H4 | 0.9500 | C9—H9 | 0.9500 |
O2—C1—O1 | 120.77 (15) | C4—C5—H5 | 119.2 |
O2—C1—C2 | 132.22 (15) | C5—C6—C7 | 117.42 (14) |
O1—C1—C2 | 107.01 (12) | C5—C6—H6 | 121.3 |
C3—C2—C7 | 122.43 (14) | C7—C6—H6 | 121.3 |
C3—C2—C1 | 129.48 (14) | C2—C7—C6 | 120.35 (14) |
C7—C2—C1 | 108.08 (13) | C2—C7—C8 | 107.24 (13) |
C4—C3—C2 | 117.22 (14) | C6—C7—C8 | 132.40 (13) |
C4—C3—H3 | 121.4 | C9—C8—O1 | 120.45 (13) |
C2—C3—H3 | 121.4 | C9—C8—C7 | 131.48 (13) |
C3—C4—C5 | 120.95 (14) | O1—C8—C7 | 108.04 (11) |
C3—C4—H4 | 119.5 | C8—C9—C9i | 124.02 (16) |
C5—C4—H4 | 119.5 | C8—C9—H9 | 118.0 |
C6—C5—C4 | 121.59 (15) | C9i—C9—H9 | 118.0 |
C6—C5—H5 | 119.2 | C1—O1—C8 | 109.58 (12) |
O2—C1—C2—C3 | 2.1 (3) | C5—C6—C7—C2 | 2.1 (2) |
O1—C1—C2—C3 | −177.95 (14) | C5—C6—C7—C8 | −176.59 (13) |
O2—C1—C2—C7 | −177.93 (16) | C2—C7—C8—C9 | −176.24 (14) |
O1—C1—C2—C7 | 2.00 (15) | C6—C7—C8—C9 | 2.6 (3) |
C7—C2—C3—C4 | −0.7 (2) | C2—C7—C8—O1 | 1.63 (15) |
C1—C2—C3—C4 | 179.22 (13) | C6—C7—C8—O1 | −179.57 (13) |
C2—C3—C4—C5 | 1.7 (2) | O1—C8—C9—C9i | −1.6 (3) |
C3—C4—C5—C6 | −0.8 (2) | C7—C8—C9—C9i | 176.07 (16) |
C4—C5—C6—C7 | −1.1 (2) | O2—C1—O1—C8 | 178.96 (12) |
C3—C2—C7—C6 | −1.2 (2) | C2—C1—O1—C8 | −0.98 (16) |
C1—C2—C7—C6 | 178.83 (12) | C9—C8—O1—C1 | 177.79 (11) |
C3—C2—C7—C8 | 177.76 (13) | C7—C8—O1—C1 | −0.36 (16) |
C1—C2—C7—C8 | −2.20 (15) |
Symmetry codes: (i) −x+1, −y, −z+1.
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2ii | 0.95 | 2.70 | 3.459 (2) | 137 |
C5—H5···O1iii | 0.95 | 2.66 | 3.406 (2) | 136 |
C6—H6···O2iv | 0.95 | 2.71 | 3.4700 (19) | 138 |
C9—H9···O2iv | 0.95 | 2.55 | 3.3209 (18) | 139 |
Symmetry codes: (ii) −x+2, −y+2, −z+2; (iii) x, y, z+1; (iv) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5025).
References
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Ji, Q., Cheng, K.-G., Li, Y.-X., Pang, M.-L., Han, J., Ma, Y.-X. & Meng, J.-B. (2006). J. Chem. Res. pp. 716–718.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Ono, K., Yamaguchi, H., Taga, K., Saito, K., Nishida, J. & Yamashita, Y. (2009). Org. Lett.11, 149–152. [DOI] [PubMed]
- Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Tomura, M., Yamaguchi, H., Ono, K. & Saito, K. (2008). Acta Cryst. E64, o172–o173. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030888/bt5025sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030888/bt5025Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report