Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 22;65(Pt 9):o2201–o2202. doi: 10.1107/S1600536809032693

3-(2-Chloro­ethyl)-2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidinium 2,4,6-trinitro­phenolate

Jerry P Jasinski a, Ray J Butcher b,*, Q N M Hakim Al-Arique c, H S Yathirajan c, B Narayana d
PMCID: PMC2970075  PMID: 21577604

Abstract

In the cation of the title salt, C11H12ClN2O+·C6H2N3O7 , the chloro­ethyl side chain is in a syn conformation, nearly orthogonal to the pyrimidine ring, with a dihedral angle of 78.9 (6)° between the plane of the chloro­ethyl chain and the pyrimidine ring. The dihedral angle between the fused rings is 4.3 (3)°. In the picrate anion, the benzene mean plane makes dihedral angles of 26.7 (1), 33.6 (2) and 5.3 (6)° with the two o-NO2 groups and the p-NO2 group, respectively. Extensive hydrogen-bond inter­actions occur between the cation–anion pair which help to establish the crystal packing. A three-center O⋯(H,H)—(N,C) acceptor hydrogen bond is observed between the phenolate O atom of the picrate anion and the amine and methyl groups of the cation. An N—H⋯(O,O) bifurcated hydrogen bond is observed between the amine group and two O atoms from the phenolate and o-NO2 groups.

Related literature

For related structures, see: Blaton et al. (1995); Chen & He (2006); Peeters et al. (1993). For general background, see: Baraldi et al. (2002); Gabbert & Giannini (1997); Jasinski et al. (2009); White et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002) and for the program Mogul, see: Bruno et al. (2004). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-o2201-scheme1.jpg

Experimental

Crystal data

  • C11H12ClN2O+·C6H2N3O7

  • M r = 451.78

  • Monoclinic, Inline graphic

  • a = 7.2718 (5) Å

  • b = 12.8159 (9) Å

  • c = 19.940 (3) Å

  • β = 97.642 (9)°

  • V = 1841.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 110 K

  • 0.44 × 0.37 × 0.23 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.309, T max = 0.575

  • 6948 measured reflections

  • 3616 independent reflections

  • 3198 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.03

  • 3616 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032693/is2446sup1.cif

e-65-o2201-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032693/is2446Isup2.hkl

e-65-o2201-Isup2.hkl (177.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4AA⋯O1B 0.88 1.82 2.6811 (16) 167
N4A—H4AA⋯O62B 0.88 2.58 2.8632 (17) 100
C5B—H5BA⋯Cl1Ai 0.95 2.79 3.6112 (16) 146
C7A—H7AA⋯O1Aii 0.95 2.57 3.2446 (19) 128
C12A—H12C⋯O1B 0.98 2.41 3.2477 (19) 144
C9A—H9AA⋯O61Biii 0.95 2.61 3.2734 (19) 127
C12A—H12A⋯O21Biv 0.98 2.62 3.340 (2) 131
C10A—H10B⋯O62Bv 0.99 2.54 3.494 (2) 161
C11A—H11A⋯O22Bvi 0.99 2.52 3.385 (2) 146
C11A—H11B⋯O42Bvii 0.99 2.56 3.431 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

We have recently reported the crystal structure of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (Jasinski et al., 2009) which is an intermediate in the synthesis of risperidone, and is a potent antipsychotic agent, especially useful for treating schizophrenia (Gabbert & Giannini, 1997). The present paper reports the interaction of 3-(2-chloroethyl)-2-methyl-4H-pyrido [1,2-a]pyrimidin-4-one as an electron donor with picric acid as electron acceptor which resulted in the formation of a charge transfer complex of title compound, (I), C17H14ClN5O8.

The title compound, C11H12ClN2O+.C6H2N3O7-, a picrate salt of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidinium-4-one, crystallizes with one independent cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the chloroethyl side chain is in a syn conformation [-sc, C1A—C2A—C10A—C11A = -78.29 (16)°], nearly orthogonal to the pyrimidine ring, with a dihedral angle of 78.9 (6)° between the chloroethyl side chain and the pyrimidine ring. The fused pyrimidine-pyridine ring is separated by 4.3 (3)°. In the picrate anion, the benzene ring adopts dihedral angles of 26.7 (1), 33.6 (2) and 5.3 (6)° with the mean planes of two o-NO2 and a p-NO2 group, respectively. Extensive hydrogen bond interactions occur between the cation-anion pair which help to establish crystal packing (Fig. 2). This includes a strong N4A—H4AA···O1B hydrogen bond and a collection of several weak C—H···O interactions within several sites between the cations and anions in the unit cell (Table 1). A three-center O···(H,H)-(N,C) acceptor hydrogen bond is observed between the phenolate oxygen atom (O1B) of the picrate anion and the amine (H4AA) and methyl group (H12C) hydrogen atoms of the pyrimidine group in the cation. A bifurcated (three-center) N—H···(O,O) hydrogen bond is observed between the amine hydrogen atom (H4AA) in the pyrimidine group and oxygen atoms from the phenolate (O1B) and o-NO2 (O62B) groups. Included in this bond is a weak N4A—H4AA···O62B interaction (Table 1). Bond lengths and angles in both the cation and anion can be regarded as normal (Cambridge Structural Database, Version 5.30, February, 2009; Allen, 2002, Mogul, Version 1.1.3; Bruno et al., 2004) The collective effects of both strong and weak intemolecular hydrogen bonds influence crystal packing in the title compound, C11H12ClN2O+.C6H2N3O7-, (I).

Experimental

The title compound was synthesized by adding a saturated solution of picric acid (0.92 g, 2 mmol) in methanol to a solution of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.45 g, 2 mmol) in 10 ml of methanol. A yellow color developed and the resulting solution was stirred well with the formation of yellow precipitate which was filtered off, washed several times with diethyl ether and then dried over CaCl2 (yield 64.5%). X-ray quality crystals were grown from acetone solution. The melting range was found to be 415–418 K.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.88 Å, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.17–1.48Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, C11H12ClN2O+.C6H2N3O7-, showing the cation-anion unit that comprises the asymmetric unit, the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate strong N—H···O, and weak N—H···O, C—H···O hydrogen bond interactions which produces a two-dimensional network arranged along the (101) plane of the unit cell.

Crystal data

C11H12ClN2O+·C6H2N3O7 F(000) = 928
Mr = 451.78 Dx = 1.629 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 4324 reflections
a = 7.2718 (5) Å θ = 4.1–74.1°
b = 12.8159 (9) Å µ = 2.40 mm1
c = 19.940 (3) Å T = 110 K
β = 97.642 (9)° Chunk, pale yellow
V = 1841.8 (3) Å3 0.44 × 0.37 × 0.23 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector 3616 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3198 reflections with I > 2σ(I)
graphite Rint = 0.017
Detector resolution: 10.5081 pixels mm-1 θmax = 74.0°, θmin = 4.1°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −15→9
Tmin = 0.309, Tmax = 0.575 l = −23→24
6948 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.063P)2 + 0.629P] where P = (Fo2 + 2Fc2)/3
3616 reflections (Δ/σ)max < 0.001
281 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.86173 (5) 0.88220 (3) 0.687448 (19) 0.02115 (12)
O1A 0.51748 (16) 0.63234 (9) 0.76768 (5) 0.0210 (2)
N1A 0.37082 (17) 0.50513 (9) 0.69885 (6) 0.0150 (3)
C1A 0.5193 (2) 0.58121 (11) 0.71692 (8) 0.0162 (3)
C2A 0.6526 (2) 0.58732 (11) 0.66975 (7) 0.0153 (3)
C3A 0.6432 (2) 0.52080 (11) 0.61613 (7) 0.0154 (3)
N4A 0.50951 (17) 0.44532 (10) 0.60742 (6) 0.0162 (3)
H4AA 0.5124 0.4000 0.5744 0.019*
C5A 0.3734 (2) 0.43685 (11) 0.64690 (7) 0.0157 (3)
C6A 0.2346 (2) 0.35986 (12) 0.63478 (8) 0.0196 (3)
H6AA 0.2378 0.3105 0.5994 0.024*
C7A 0.0949 (2) 0.35698 (13) 0.67466 (9) 0.0226 (3)
H7AA 0.0018 0.3046 0.6677 0.027*
C8A 0.0903 (2) 0.43233 (13) 0.72609 (8) 0.0227 (3)
H8AA −0.0095 0.4328 0.7524 0.027*
C9A 0.2275 (2) 0.50377 (12) 0.73803 (8) 0.0190 (3)
H9AA 0.2254 0.5532 0.7734 0.023*
C10A 0.7963 (2) 0.67205 (12) 0.68363 (8) 0.0171 (3)
H10A 0.9037 0.6568 0.6595 0.021*
H10B 0.8409 0.6754 0.7327 0.021*
C11A 0.7098 (2) 0.77552 (12) 0.65971 (8) 0.0187 (3)
H11A 0.5904 0.7844 0.6778 0.022*
H11B 0.6843 0.7757 0.6097 0.022*
C12A 0.7717 (2) 0.52487 (13) 0.56313 (8) 0.0202 (3)
H12A 0.9003 0.5188 0.5848 0.030*
H12B 0.7554 0.5914 0.5388 0.030*
H12C 0.7433 0.4671 0.5312 0.030*
O1B 0.57412 (15) 0.30604 (8) 0.51298 (5) 0.0185 (2)
O21B 0.81068 (17) 0.36265 (9) 0.42333 (6) 0.0246 (3)
O22B 0.75216 (16) 0.25511 (9) 0.33919 (6) 0.0223 (3)
O41B 0.88575 (16) −0.10609 (9) 0.40701 (6) 0.0233 (3)
O42B 0.78903 (17) −0.16264 (9) 0.49860 (6) 0.0248 (3)
O61B 0.52961 (16) 0.07476 (10) 0.64703 (6) 0.0250 (3)
O62B 0.61759 (18) 0.23621 (9) 0.64474 (6) 0.0257 (3)
N2B 0.76693 (17) 0.27587 (10) 0.40009 (7) 0.0174 (3)
N4B 0.81817 (17) −0.09140 (10) 0.45962 (7) 0.0175 (3)
N6B 0.59534 (18) 0.14919 (11) 0.61918 (6) 0.0180 (3)
C1B 0.6503 (2) 0.21995 (11) 0.50651 (7) 0.0145 (3)
C2B 0.7355 (2) 0.19261 (12) 0.44702 (7) 0.0153 (3)
C3B 0.7866 (2) 0.09381 (12) 0.43082 (7) 0.0158 (3)
H3BA 0.8335 0.0804 0.3894 0.019*
C4B 0.76828 (19) 0.01382 (12) 0.47634 (7) 0.0156 (3)
C5B 0.70412 (19) 0.03312 (12) 0.53788 (7) 0.0157 (3)
H5BA 0.6955 −0.0220 0.5691 0.019*
C6B 0.6534 (2) 0.13254 (12) 0.55290 (7) 0.0151 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0225 (2) 0.0160 (2) 0.0248 (2) −0.00529 (13) 0.00290 (15) −0.00297 (14)
O1A 0.0287 (6) 0.0192 (6) 0.0158 (5) −0.0004 (4) 0.0054 (4) −0.0034 (4)
N1A 0.0175 (6) 0.0129 (6) 0.0149 (6) 0.0017 (5) 0.0037 (5) 0.0018 (5)
C1A 0.0202 (7) 0.0121 (7) 0.0157 (7) 0.0020 (6) 0.0006 (6) 0.0025 (6)
C2A 0.0158 (7) 0.0143 (7) 0.0154 (7) 0.0002 (6) 0.0009 (5) 0.0019 (5)
C3A 0.0154 (7) 0.0140 (7) 0.0167 (7) 0.0020 (5) 0.0018 (5) 0.0017 (6)
N4A 0.0189 (6) 0.0144 (6) 0.0159 (6) 0.0004 (5) 0.0044 (5) −0.0028 (5)
C5A 0.0187 (7) 0.0128 (7) 0.0156 (7) 0.0032 (6) 0.0023 (6) 0.0027 (5)
C6A 0.0218 (8) 0.0136 (7) 0.0232 (8) 0.0012 (6) 0.0023 (6) 0.0006 (6)
C7A 0.0205 (8) 0.0169 (7) 0.0303 (9) −0.0027 (6) 0.0035 (7) 0.0057 (6)
C8A 0.0225 (8) 0.0234 (8) 0.0237 (8) 0.0017 (6) 0.0089 (6) 0.0076 (7)
C9A 0.0226 (7) 0.0190 (7) 0.0165 (7) 0.0039 (6) 0.0069 (6) 0.0048 (6)
C10A 0.0176 (7) 0.0171 (7) 0.0163 (7) −0.0007 (6) 0.0010 (6) −0.0011 (6)
C11A 0.0180 (7) 0.0150 (7) 0.0221 (8) −0.0044 (6) −0.0002 (6) −0.0017 (6)
C12A 0.0213 (7) 0.0221 (8) 0.0183 (7) −0.0019 (6) 0.0063 (6) −0.0027 (6)
O1B 0.0219 (5) 0.0163 (5) 0.0175 (5) 0.0027 (4) 0.0037 (4) −0.0018 (4)
O21B 0.0309 (6) 0.0177 (6) 0.0261 (6) −0.0055 (5) 0.0071 (5) −0.0003 (5)
O22B 0.0257 (6) 0.0268 (6) 0.0149 (5) 0.0026 (5) 0.0045 (4) 0.0025 (5)
O41B 0.0264 (6) 0.0222 (6) 0.0226 (6) 0.0026 (5) 0.0085 (5) −0.0070 (5)
O42B 0.0296 (6) 0.0152 (5) 0.0313 (7) 0.0001 (5) 0.0103 (5) 0.0018 (5)
O61B 0.0266 (6) 0.0304 (7) 0.0199 (6) −0.0034 (5) 0.0096 (5) 0.0024 (5)
O62B 0.0412 (7) 0.0208 (6) 0.0149 (5) 0.0088 (5) 0.0029 (5) −0.0030 (4)
N2B 0.0148 (6) 0.0188 (7) 0.0190 (6) 0.0009 (5) 0.0039 (5) 0.0017 (5)
N4B 0.0141 (6) 0.0172 (6) 0.0210 (7) −0.0015 (5) 0.0018 (5) −0.0039 (5)
N6B 0.0177 (6) 0.0220 (7) 0.0143 (6) 0.0041 (5) 0.0027 (5) 0.0012 (5)
C1B 0.0129 (6) 0.0157 (7) 0.0148 (7) −0.0008 (5) 0.0010 (5) −0.0021 (6)
C2B 0.0141 (6) 0.0178 (7) 0.0140 (7) −0.0020 (5) 0.0016 (5) 0.0011 (6)
C3B 0.0131 (7) 0.0198 (7) 0.0145 (7) −0.0007 (6) 0.0025 (5) −0.0026 (6)
C4B 0.0138 (7) 0.0155 (7) 0.0175 (7) −0.0005 (5) 0.0019 (5) −0.0036 (6)
C5B 0.0125 (7) 0.0166 (7) 0.0178 (7) −0.0014 (5) 0.0011 (5) 0.0007 (6)
C6B 0.0136 (7) 0.0186 (7) 0.0133 (7) −0.0003 (5) 0.0028 (5) −0.0011 (6)

Geometric parameters (Å, °)

Cl1A—C11A 1.7979 (15) C11A—H11A 0.9900
O1A—C1A 1.2073 (19) C11A—H11B 0.9900
N1A—C5A 1.3582 (19) C12A—H12A 0.9800
N1A—C9A 1.3835 (19) C12A—H12B 0.9800
N1A—C1A 1.4636 (19) C12A—H12C 0.9800
C1A—C2A 1.440 (2) O1B—C1B 1.2489 (18)
C2A—C3A 1.362 (2) O21B—N2B 1.2303 (18)
C2A—C10A 1.507 (2) O22B—N2B 1.2337 (17)
C3A—N4A 1.3659 (19) O41B—N4B 1.2307 (17)
C3A—C12A 1.502 (2) O42B—N4B 1.2355 (18)
N4A—C5A 1.3485 (19) O61B—N6B 1.2317 (18)
N4A—H4AA 0.8800 O62B—N6B 1.2279 (18)
C5A—C6A 1.409 (2) N2B—C2B 1.4572 (19)
C6A—C7A 1.372 (2) N4B—C4B 1.4469 (19)
C6A—H6AA 0.9500 N6B—C6B 1.4559 (19)
C7A—C8A 1.412 (2) C1B—C6B 1.451 (2)
C7A—H7AA 0.9500 C1B—C2B 1.452 (2)
C8A—C9A 1.352 (2) C2B—C3B 1.370 (2)
C8A—H8AA 0.9500 C3B—C4B 1.387 (2)
C9A—H9AA 0.9500 C3B—H3BA 0.9500
C10A—C11A 1.517 (2) C4B—C5B 1.392 (2)
C10A—H10A 0.9900 C5B—C6B 1.371 (2)
C10A—H10B 0.9900 C5B—H5BA 0.9500
C5A—N1A—C9A 120.69 (13) Cl1A—C11A—H11A 109.5
C5A—N1A—C1A 122.17 (12) C10A—C11A—H11B 109.5
C9A—N1A—C1A 117.12 (13) Cl1A—C11A—H11B 109.5
O1A—C1A—C2A 126.96 (14) H11A—C11A—H11B 108.1
O1A—C1A—N1A 118.57 (14) C3A—C12A—H12A 109.5
C2A—C1A—N1A 114.47 (13) C3A—C12A—H12B 109.5
C3A—C2A—C1A 120.70 (14) H12A—C12A—H12B 109.5
C3A—C2A—C10A 123.83 (14) C3A—C12A—H12C 109.5
C1A—C2A—C10A 115.46 (13) H12A—C12A—H12C 109.5
C2A—C3A—N4A 120.25 (13) H12B—C12A—H12C 109.5
C2A—C3A—C12A 124.01 (14) O21B—N2B—O22B 123.36 (13)
N4A—C3A—C12A 115.73 (13) O21B—N2B—C2B 118.35 (13)
C5A—N4A—C3A 123.23 (13) O22B—N2B—C2B 118.27 (13)
C5A—N4A—H4AA 118.4 O41B—N4B—O42B 122.99 (13)
C3A—N4A—H4AA 118.4 O41B—N4B—C4B 118.67 (13)
N4A—C5A—N1A 118.62 (13) O42B—N4B—C4B 118.33 (13)
N4A—C5A—C6A 121.39 (14) O62B—N6B—O61B 123.63 (13)
N1A—C5A—C6A 119.99 (14) O62B—N6B—C6B 118.15 (13)
C7A—C6A—C5A 119.23 (15) O61B—N6B—C6B 118.20 (13)
C7A—C6A—H6AA 120.4 O1B—C1B—C6B 125.86 (14)
C5A—C6A—H6AA 120.4 O1B—C1B—C2B 122.74 (13)
C6A—C7A—C8A 119.56 (15) C6B—C1B—C2B 111.23 (13)
C6A—C7A—H7AA 120.2 C3B—C2B—C1B 125.03 (13)
C8A—C7A—H7AA 120.2 C3B—C2B—N2B 117.04 (13)
C9A—C8A—C7A 120.20 (15) C1B—C2B—N2B 117.92 (13)
C9A—C8A—H8AA 119.9 C2B—C3B—C4B 118.42 (14)
C7A—C8A—H8AA 119.9 C2B—C3B—H3BA 120.8
C8A—C9A—N1A 120.20 (15) C4B—C3B—H3BA 120.8
C8A—C9A—H9AA 119.9 C3B—C4B—C5B 121.21 (14)
N1A—C9A—H9AA 119.9 C3B—C4B—N4B 119.28 (13)
C2A—C10A—C11A 108.90 (12) C5B—C4B—N4B 119.51 (13)
C2A—C10A—H10A 109.9 C6B—C5B—C4B 119.29 (14)
C11A—C10A—H10A 109.9 C6B—C5B—H5BA 120.4
C2A—C10A—H10B 109.9 C4B—C5B—H5BA 120.4
C11A—C10A—H10B 109.9 C5B—C6B—C1B 124.09 (14)
H10A—C10A—H10B 108.3 C5B—C6B—N6B 116.97 (13)
C10A—C11A—Cl1A 110.85 (11) C1B—C6B—N6B 118.92 (13)
C10A—C11A—H11A 109.5
C5A—N1A—C1A—O1A −172.72 (13) C2A—C10A—C11A—Cl1A 170.43 (10)
C9A—N1A—C1A—O1A 6.0 (2) O1B—C1B—C2B—C3B −165.97 (15)
C5A—N1A—C1A—C2A 8.26 (19) C6B—C1B—C2B—C3B 9.5 (2)
C9A—N1A—C1A—C2A −173.04 (12) O1B—C1B—C2B—N2B 13.0 (2)
O1A—C1A—C2A—C3A 176.59 (15) C6B—C1B—C2B—N2B −171.52 (12)
N1A—C1A—C2A—C3A −4.5 (2) O21B—N2B—C2B—C3B −145.18 (14)
O1A—C1A—C2A—C10A −4.5 (2) O22B—N2B—C2B—C3B 33.30 (19)
N1A—C1A—C2A—C10A 174.42 (12) O21B—N2B—C2B—C1B 35.76 (19)
C1A—C2A—C3A—N4A −1.8 (2) O22B—N2B—C2B—C1B −145.77 (14)
C10A—C2A—C3A—N4A 179.40 (13) C1B—C2B—C3B—C4B −4.6 (2)
C1A—C2A—C3A—C12A 177.36 (14) N2B—C2B—C3B—C4B 176.39 (13)
C10A—C2A—C3A—C12A −1.5 (2) C2B—C3B—C4B—C5B −1.6 (2)
C2A—C3A—N4A—C5A 5.2 (2) C2B—C3B—C4B—N4B 178.83 (13)
C12A—C3A—N4A—C5A −174.00 (13) O41B—N4B—C4B—C3B 4.1 (2)
C3A—N4A—C5A—N1A −1.5 (2) O42B—N4B—C4B—C3B −175.13 (13)
C3A—N4A—C5A—C6A 177.89 (14) O41B—N4B—C4B—C5B −175.43 (13)
C9A—N1A—C5A—N4A 175.85 (13) O42B—N4B—C4B—C5B 5.3 (2)
C1A—N1A—C5A—N4A −5.5 (2) C3B—C4B—C5B—C6B 1.8 (2)
C9A—N1A—C5A—C6A −3.5 (2) N4B—C4B—C5B—C6B −178.67 (13)
C1A—N1A—C5A—C6A 175.12 (13) C4B—C5B—C6B—C1B 4.3 (2)
N4A—C5A—C6A—C7A −177.42 (14) C4B—C5B—C6B—N6B −177.30 (13)
N1A—C5A—C6A—C7A 2.0 (2) O1B—C1B—C6B—C5B 166.06 (15)
C5A—C6A—C7A—C8A 1.3 (2) C2B—C1B—C6B—C5B −9.2 (2)
C6A—C7A—C8A—C9A −3.1 (2) O1B—C1B—C6B—N6B −12.4 (2)
C7A—C8A—C9A—N1A 1.6 (2) C2B—C1B—C6B—N6B 172.34 (12)
C5A—N1A—C9A—C8A 1.8 (2) O62B—N6B—C6B—C5B 152.45 (14)
C1A—N1A—C9A—C8A −176.96 (13) O61B—N6B—C6B—C5B −26.3 (2)
C3A—C2A—C10A—C11A 100.58 (17) O62B—N6B—C6B—C1B −29.02 (19)
C1A—C2A—C10A—C11A −78.29 (16) O61B—N6B—C6B—C1B 152.23 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4A—H4AA···O1B 0.88 1.82 2.6811 (16) 167
N4A—H4AA···O62B 0.88 2.58 2.8632 (17) 100
C5B—H5BA···Cl1Ai 0.95 2.79 3.6112 (16) 146
C7A—H7AA···O1Aii 0.95 2.57 3.2446 (19) 128
C12A—H12C···O1B 0.98 2.41 3.2477 (19) 144
C9A—H9AA···O61Biii 0.95 2.61 3.2734 (19) 127
C12A—H12A···O21Biv 0.98 2.62 3.340 (2) 131
C10A—H10B···O62Bv 0.99 2.54 3.494 (2) 161
C11A—H11A···O22Bvi 0.99 2.52 3.385 (2) 146
C11A—H11B···O42Bvii 0.99 2.56 3.431 (2) 147

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+2, −y+1, −z+1; (v) −x+3/2, y+1/2, −z+3/2; (vi) −x+1, −y+1, −z+1; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2446).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Baraldi, P. G., Cacciari, B., Romagnoli, R., Spalluto, G., Monopoli, A., Ongini, E., Varani, K. & Borea, P. A. (2002). J. Med. Chem.45, 115–126. [DOI] [PubMed]
  3. Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535.
  4. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [DOI] [PubMed]
  5. Chen, H.-L. & He, H.-W. (2006). Acta Cryst. E62, o1226–o1227.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Gabbert, J. F. & Giannini, A. J. (1997). Am. J. Ther.4, 159–164. [PubMed]
  8. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1987–o1988. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RE Oxford Diffraction Ltd, Abingdon, England.
  10. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698–1700.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. White, D. C., Greenwood, D. C., Downey, A. L., Bloomquis, J. R. & Wolfe, J. F. (2004). Bioorg. Med. Chem.12, 5711–5717. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032693/is2446sup1.cif

e-65-o2201-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032693/is2446Isup2.hkl

e-65-o2201-Isup2.hkl (177.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES