Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2125. doi: 10.1107/S1600536809030876

Ethyl 2-acetyl-3-(4-chloro­anilino)butanoate

K Rajesh a, V Vijayakumar a, T Narasimhamurthy b, J Suresh c, P L Nilantha Lakshman d,*
PMCID: PMC2970076  PMID: 21577538

Abstract

The title compound, C14H18ClNO3, adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups trans. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds are observed.

Related literature

For the crystal structure of ethyl 2-acetyl-3-anilinobutanoate, see: Priya et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-o2125-scheme1.jpg

Experimental

Crystal data

  • C14H18ClNO3

  • M r = 283.74

  • Triclinic, Inline graphic

  • a = 6.9161 (2) Å

  • b = 10.1319 (3) Å

  • c = 11.4063 (3) Å

  • α = 87.511 (10)°

  • β = 80.873 (10)°

  • γ = 73.367 (2)°

  • V = 756.14 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.17 × 0.14 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.958, T max = 0.972

  • 14994 measured reflections

  • 4229 independent reflections

  • 3037 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.132

  • S = 1.04

  • 4229 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030876/ci2874sup1.cif

e-65-o2125-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030876/ci2874Isup2.hkl

e-65-o2125-Isup2.hkl (203KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O12i 0.85 (2) 2.185 (19) 3.0282 (17) 170 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA–DST programme.

supplementary crystallographic information

Comment

Ethyl butanoate is commonly used as an artificial flavoring agent in alcoholic beverages, perfumery products and as a plasticizer for cellulose. The crystal structure of ethyl 2-acetyl-3-anilinobutanoate has been reported (Priya et al., 2006).

In the title molecule (Fig. 1), there are three planar subunits viz. the chlorophenyl amine (C1-C6/N7/Cl1), acetyl (C10/C11/O12/C13) and ethyl acetate (C10/C14/O15/O16/C17/C18) groups. The chlorophenyl amino ring is inclined at angles of 76.28 (9) and 3.48 (7)° to the acetyl and ethyl acetate groups, respectively, with the acetyl group at an angle of 72.9 (1)° to the ethyl acetate group. The molecule adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups, i.e. from C18—C17—O16—C14 to C10—C8—N7—C1 lie in the range 157.20 (14)-178.59 (15)°.

In the crystal structure, molecules associate into dimers through intermolecular N—H···O hydrogen bonds (Table 1). The hydrogen-bonded centrosymmetric dimers are characterized by an R22(12) ring motif (Fig. 2) (Bernstein et al., 1995).

Experimental

A mixture of acetaldehyde (22.5 ml), ethyl acetoacetate (6.3 ml) and aniline (6.5 ml) was placed in a round bottomed flask. The contents were stirred at 273 K to 278 K for about 5 h under nitrogen atmosphere. A paste-like solid was formed, which was initially washed with benzene, then chloroform and then extracted with diethyl ether. The extract allowed to evaporate at room temperature yielded the product with crystalline nature. The resulting compound was recrystallized from diethyl ether (yield 88%, m. p. 357 K).

Refinement

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Part of the crystal structur of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms other than H7 have been omitted for clarity.

Crystal data

C14H18ClNO3 Z = 2
Mr = 283.74 F(000) = 300
Triclinic, P1 Dx = 1.246 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 6.9161 (2) Å Cell parameters from 25 reflections
b = 10.1319 (3) Å θ = 2–29.6°
c = 11.4063 (3) Å µ = 0.26 mm1
α = 87.511 (10)° T = 293 K
β = 80.873 (10)° Block, colourless
γ = 73.367 (2)° 0.17 × 0.14 × 0.11 mm
V = 756.14 (4) Å3

Data collection

Bruker SMART APEX CCD diffractometer 4229 independent reflections
Radiation source: fine-focus sealed tube 3037 reflections with I > 2σ(I)
graphite Rint = 0.017
ω scans θmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −9→9
Tmin = 0.958, Tmax = 0.972 k = −14→13
14994 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1581P] where P = (Fo2 + 2Fc2)/3
4229 reflections (Δ/σ)max = 0.001
179 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H7 0.352 (3) 0.086 (2) 0.6502 (16) 0.060 (5)*
C1 0.3175 (2) 0.22108 (14) 0.76810 (12) 0.0460 (3)
C2 0.2162 (3) 0.35445 (16) 0.80981 (14) 0.0591 (4)
H2 0.1251 0.4138 0.7660 0.071*
C3 0.2498 (3) 0.39921 (17) 0.91543 (15) 0.0602 (4)
H3 0.1828 0.4887 0.9416 0.072*
C4 0.3817 (3) 0.31215 (17) 0.98199 (13) 0.0524 (4)
C5 0.4832 (3) 0.18015 (17) 0.94306 (15) 0.0572 (4)
H5 0.5730 0.1215 0.9880 0.069*
C6 0.4516 (2) 0.13524 (16) 0.83781 (14) 0.0540 (4)
H6 0.5208 0.0458 0.8122 0.065*
C8 0.1319 (2) 0.23376 (15) 0.59384 (13) 0.0484 (3)
H8 0.0995 0.3343 0.5986 0.058*
C9 −0.0608 (3) 0.1919 (2) 0.63979 (19) 0.0810 (6)
H9A −0.0328 0.0939 0.6325 0.121*
H9B −0.1663 0.2372 0.5941 0.121*
H9C −0.1051 0.2181 0.7217 0.121*
C10 0.2170 (2) 0.18944 (13) 0.46426 (12) 0.0422 (3)
H10 0.2416 0.0896 0.4586 0.051*
C11 0.4189 (2) 0.22321 (14) 0.42512 (13) 0.0463 (3)
C13 0.4247 (3) 0.36782 (16) 0.44036 (17) 0.0616 (4)
H13A 0.4174 0.3860 0.5231 0.092*
H13B 0.3107 0.4307 0.4105 0.092*
H13C 0.5496 0.3796 0.3973 0.092*
C14 0.0697 (2) 0.25923 (14) 0.37995 (12) 0.0432 (3)
C17 −0.0456 (3) 0.23396 (18) 0.20012 (14) 0.0559 (4)
H17A −0.0027 0.3105 0.1618 0.067*
H17B −0.1881 0.2677 0.2351 0.067*
C18 −0.0192 (3) 0.1244 (2) 0.11202 (17) 0.0780 (6)
H18A 0.1228 0.0895 0.0799 0.117*
H18B −0.0958 0.1618 0.0491 0.117*
H18C −0.0676 0.0510 0.1500 0.117*
Cl1 0.41769 (9) 0.37010 (6) 1.11659 (4) 0.07881 (19)
N7 0.3003 (2) 0.17272 (14) 0.66007 (12) 0.0573 (4)
O12 0.56910 (18) 0.13519 (11) 0.38320 (12) 0.0680 (4)
O15 −0.03698 (19) 0.37584 (11) 0.38958 (10) 0.0631 (3)
O16 0.07863 (16) 0.17534 (10) 0.29170 (9) 0.0495 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0517 (8) 0.0423 (7) 0.0411 (7) −0.0058 (6) −0.0133 (6) 0.0036 (5)
C2 0.0749 (11) 0.0443 (8) 0.0519 (8) 0.0033 (7) −0.0283 (8) −0.0011 (6)
C3 0.0746 (11) 0.0474 (8) 0.0547 (9) −0.0044 (8) −0.0212 (8) −0.0063 (7)
C4 0.0587 (9) 0.0610 (9) 0.0429 (7) −0.0220 (7) −0.0148 (6) 0.0021 (6)
C5 0.0584 (9) 0.0591 (9) 0.0549 (9) −0.0104 (7) −0.0259 (7) 0.0102 (7)
C6 0.0589 (9) 0.0448 (8) 0.0538 (8) −0.0012 (7) −0.0209 (7) 0.0029 (6)
C8 0.0551 (9) 0.0445 (7) 0.0434 (7) −0.0071 (6) −0.0148 (6) 0.0014 (6)
C9 0.0745 (13) 0.1022 (16) 0.0686 (12) −0.0333 (12) −0.0067 (10) 0.0151 (11)
C10 0.0506 (8) 0.0312 (6) 0.0456 (7) −0.0067 (5) −0.0186 (6) −0.0019 (5)
C11 0.0504 (8) 0.0383 (7) 0.0478 (7) −0.0038 (6) −0.0150 (6) −0.0059 (6)
C13 0.0561 (9) 0.0457 (8) 0.0833 (12) −0.0162 (7) −0.0042 (8) −0.0155 (8)
C14 0.0468 (7) 0.0388 (7) 0.0446 (7) −0.0084 (6) −0.0151 (6) −0.0025 (5)
C17 0.0531 (9) 0.0669 (10) 0.0467 (8) −0.0071 (7) −0.0219 (7) −0.0042 (7)
C18 0.0826 (13) 0.0905 (14) 0.0631 (11) −0.0141 (11) −0.0310 (10) −0.0209 (10)
Cl1 0.0954 (4) 0.0974 (4) 0.0552 (3) −0.0350 (3) −0.0299 (2) −0.0060 (2)
N7 0.0747 (9) 0.0408 (7) 0.0489 (7) 0.0062 (6) −0.0282 (6) −0.0037 (5)
O12 0.0566 (7) 0.0485 (6) 0.0866 (9) 0.0013 (5) −0.0009 (6) −0.0141 (6)
O15 0.0747 (8) 0.0439 (6) 0.0632 (7) 0.0080 (5) −0.0318 (6) −0.0089 (5)
O16 0.0562 (6) 0.0443 (5) 0.0487 (5) −0.0062 (4) −0.0232 (5) −0.0065 (4)

Geometric parameters (Å, °)

C1—N7 1.3802 (18) C10—C14 1.5173 (18)
C1—C2 1.397 (2) C10—C11 1.526 (2)
C1—C6 1.4002 (19) C10—H10 0.98
C2—C3 1.381 (2) C11—O12 1.2050 (17)
C2—H2 0.93 C11—C13 1.495 (2)
C3—C4 1.374 (2) C13—H13A 0.96
C3—H3 0.93 C13—H13B 0.96
C4—C5 1.376 (2) C13—H13C 0.96
C4—Cl1 1.7457 (15) C14—O15 1.1995 (16)
C5—C6 1.372 (2) C14—O16 1.3282 (16)
C5—H5 0.93 C17—O16 1.4562 (17)
C6—H6 0.93 C17—C18 1.482 (2)
C8—N7 1.4617 (18) C17—H17A 0.97
C8—C9 1.521 (3) C17—H17B 0.97
C8—C10 1.537 (2) C18—H18A 0.96
C8—H8 0.98 C18—H18B 0.96
C9—H9A 0.96 C18—H18C 0.96
C9—H9B 0.96 N7—H7 0.854 (19)
C9—H9C 0.96
N7—C1—C2 123.61 (13) C11—C10—C8 110.57 (11)
N7—C1—C6 118.80 (13) C14—C10—H10 108.5
C2—C1—C6 117.51 (14) C11—C10—H10 108.5
C3—C2—C1 120.73 (14) C8—C10—H10 108.5
C3—C2—H2 119.6 O12—C11—C13 121.23 (15)
C1—C2—H2 119.6 O12—C11—C10 120.56 (13)
C4—C3—C2 120.30 (15) C13—C11—C10 118.21 (12)
C4—C3—H3 119.9 C11—C13—H13A 109.5
C2—C3—H3 119.9 C11—C13—H13B 109.5
C3—C4—C5 120.15 (14) H13A—C13—H13B 109.5
C3—C4—Cl1 119.42 (13) C11—C13—H13C 109.5
C5—C4—Cl1 120.43 (12) H13A—C13—H13C 109.5
C6—C5—C4 119.88 (14) H13B—C13—H13C 109.5
C6—C5—H5 120.1 O15—C14—O16 124.26 (13)
C4—C5—H5 120.1 O15—C14—C10 124.71 (12)
C5—C6—C1 121.43 (14) O16—C14—C10 111.01 (11)
C5—C6—H6 119.3 O16—C17—C18 108.05 (14)
C1—C6—H6 119.3 O16—C17—H17A 110.1
N7—C8—C9 113.62 (14) C18—C17—H17A 110.1
N7—C8—C10 105.08 (12) O16—C17—H17B 110.1
C9—C8—C10 112.39 (14) C18—C17—H17B 110.1
N7—C8—H8 108.5 H17A—C17—H17B 108.4
C9—C8—H8 108.5 C17—C18—H18A 109.5
C10—C8—H8 108.5 C17—C18—H18B 109.5
C8—C9—H9A 109.5 H18A—C18—H18B 109.5
C8—C9—H9B 109.5 C17—C18—H18C 109.5
H9A—C9—H9B 109.5 H18A—C18—H18C 109.5
C8—C9—H9C 109.5 H18B—C18—H18C 109.5
H9A—C9—H9C 109.5 C1—N7—C8 124.19 (12)
H9B—C9—H9C 109.5 C1—N7—H7 114.4 (12)
C14—C10—C11 108.57 (12) C8—N7—H7 114.5 (12)
C14—C10—C8 112.08 (11) C14—O16—C17 116.16 (11)
N7—C1—C2—C3 −175.94 (17) C8—C10—C11—O12 126.22 (15)
C6—C1—C2—C3 0.6 (3) C14—C10—C11—C13 69.60 (16)
C1—C2—C3—C4 −0.9 (3) C8—C10—C11—C13 −53.73 (17)
C2—C3—C4—C5 0.8 (3) C11—C10—C14—O15 −85.49 (18)
C2—C3—C4—Cl1 −178.75 (14) C8—C10—C14—O15 36.9 (2)
C3—C4—C5—C6 −0.3 (3) C11—C10—C14—O16 92.66 (13)
Cl1—C4—C5—C6 179.17 (13) C8—C10—C14—O16 −144.92 (12)
C4—C5—C6—C1 0.1 (3) C2—C1—N7—C8 −20.5 (3)
N7—C1—C6—C5 176.54 (16) C6—C1—N7—C8 162.99 (15)
C2—C1—C6—C5 −0.2 (3) C9—C8—N7—C1 −79.5 (2)
N7—C8—C10—C14 −172.73 (11) C10—C8—N7—C1 157.20 (14)
C9—C8—C10—C14 63.22 (17) O15—C14—O16—C17 2.3 (2)
N7—C8—C10—C11 −51.45 (15) C10—C14—O16—C17 −175.82 (12)
C9—C8—C10—C11 −175.49 (13) C18—C17—O16—C14 −178.59 (15)
C14—C10—C11—O12 −110.45 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H7···O12i 0.85 (2) 2.185 (19) 3.0282 (17) 170 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2874).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  2. Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Priya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, o5367–o5368.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030876/ci2874sup1.cif

e-65-o2125-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030876/ci2874Isup2.hkl

e-65-o2125-Isup2.hkl (203KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES