Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 26;65(Pt 9):o2231. doi: 10.1107/S1600536809032942

1,1,2,2-Tetra­kis(di-o-tolyl­phosphino)ethane

Elizabeth M Sisler a, Karla Arias a, Danielle L Gray b, Quinetta D Shelby a,*
PMCID: PMC2970080  PMID: 21577630

Abstract

The complete molecule of title compound, C58H58P4, is generated by a crystallographic twofold rotation axis that passes through the center of the C(methine)—C(methine) bond of length 1.582 (4) Å. The C—P bond lengths are 1.8824 (19) and 1.8991 (19) Å. The P—C—P angle of 109.69 (9)° is essentially equal to the expected value of 109.5° for a tetra­hedral C atom. Although the C(methine)—P—C(aromatic) bond angles range from 102.67 (9) to 107.04 (9)°, the C(aromatic)—P—C(aromatic) bond angles of 96.72 (9) and 97.29 (9)° are significantly smaller. The steric demands of the o-tolyl groups cause deviations from the bond lengths and angles reported for its phenyl analog.

Related literature

For 1,1,2,2-tetra­kis[(diphen­yl)phosphino]ethane, see: Braunstein et al. (1995a ). For oxidative coupling of (bis­phosphino)methanides, see: Braunstein et al. (1995b ); Schmidbaur & Deschler (1983). graphic file with name e-65-o2231-scheme1.jpg

Experimental

Crystal data

  • C58H58P4

  • M r = 878.92

  • Monoclinic, Inline graphic

  • a = 21.8875 (11) Å

  • b = 10.9702 (6) Å

  • c = 19.691 (1) Å

  • β = 90.761 (3)°

  • V = 4727.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 193 K

  • 0.42 × 0.40 × 0.24 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.942, T max = 0.976

  • 19717 measured reflections

  • 4345 independent reflections

  • 3343 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.102

  • S = 1.01

  • 4345 reflections

  • 284 parameters

  • H-atom parameters not refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT, XPREP (Bruker, 2005) and SADABS (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2005).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032942/ng2629sup1.cif

e-65-o2231-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032942/ng2629Isup2.hkl

e-65-o2231-Isup2.hkl (213KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Science Foundation (grant CHE-0548107) for support of this work. The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants from the NSF (CHE 95–03145 and CHE 03–43032).

supplementary crystallographic information

Comment

The title compound, [P(o-tolyl)2]2CH—CH[P(o-tolyl)2]2, was unintentionally obtained as one of two isomeric products from the reaction of Li{CH[P(o-tolyl)2]2} with PdCl2. It is formed by the C—C cross-coupling of two CH[P(o-tolyl)2]2 units, whereas its isomer is a P—C coupling product. Oxidative coupling reactions involving (bisphosphino)methanide compounds have been reported (Braunstein et al., 1995a; Braunstein et al., 1995b; Schmidbaur & Deschler, 1983).

The title compound crystallizes in C2/c, whereas the space group is P21/n for its phenyl analog, [P(Ph)2]2CH—CH[P(Ph)2]2 (Braunstein et al., 1995a). The structure of the title compound has a twofold rotation axis through the center of the C(methine)–C(methine) bond (Fig. 1). The atomic positions of only one CH[P(o-tolyl)2]2 unit were determined, and the atomic positions of the other unit are related by the symmetry operator (1 - x, y, 0.5 - z). The methine hydrogen atoms adopt a gauche conformation that likely maximizes the π interactions of the aromatic rings. The C1(methine)—C1(methine) bond length is 1.582 (4) Å, and its C1—P bond lengths are 1.8824 (19) and 1.8991 (19) Å. The P1—C1—P2 bond angle of 109.69 (9)° essentially equals the tetrahedral value of 109.5°. The C(methine)—P—C(aromatic) bond angles range from 102.67 (9) to 107.04 (9)°, whereas the C(aromatic)—P—C(aromatic) bond angles of 96.72 (9) and 97.29 (9)° are significantly smaller. The steric demands of the o-tolyl groups in C58H58P4 cause deviations from the bond lengths and angles reported for the related phenyl compound.

Like its phenyl analog, the title compound is chiral in the solid form, and its room temperature NMR spectra reveal that its chirality is retained in solution. The compound has an AA'BB' 31P spin system, and its methine protons are inequivalent in the 1H NMR spectrum.

Experimental

The title compound, C58H58P4, is one of two isomeric products. Under an N2 atmosphere, n-BuLi (0.63 ml of a 1.6 M solution in hexanes, 1.0 mmol) was added over 1 h to a solution of bis(di-o-tolylphosphino)methane (0.44 g, 1.0 mmol) in toluene (5 ml). The solution was refluxed for 1 h and the solvent was removed under vacuum. The solid residue was redissolved in THF (5 ml) and added over 1 h to a suspension of PdCl2 in toluene (6 ml). The mixture was stirred overnight and the solvent was removed under vacuum. Toluene (8 ml) and pentane (50 ml) were added to dissolve the residue, and the mixture was filtered through Celite. The filtrate was concentrated to 3 ml and layered with pentane (15 ml). Yellow crystals of the title compound were obtained after 1 week at room temperature. 1H NMR (CDCl3): δ 1.65–2.18 (m, C6H4CH3), 3.27 (br s, CH), 4.55 (m, CH), 5.76 (br s, C6H4CH3), 6.05 (br s, C6H4CH3), 6.81–7.55 (m, C6H4CH3), 8.23 (br s, C6H4CH3). 31P {1H} NMR (CDCl3): δ -16.3 (m, PA), -39.3 (m, PB) of an AA'BB' spin system.

Refinement

A structural model consisting of the molecule was developed using the Bruker SHELXTL suite of programs. Most of the non-hydrogen containing atoms were found in the E-map generated from the direct-methods solution. The remaining non-hydrogen atoms were located after full-matrix least squares / difference Fourier cycles were performed. All non-hydrogen atoms were refined with anisotropic displacement parameters. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H···H distances. Remaining H atoms were included as riding idealized contributors. Methyl H atom U's were assigned as 1.5 times Ueq of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier Ueq.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. The unlabeled atoms are related to the labeled atoms by the symmetry operator (1 - x, y, 0.5 - z).

Crystal data

C58H58P4 F(000) = 1864
Mr = 878.92 Dx = 1.235 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3541 reflections
a = 21.8875 (11) Å θ = 2.8–26.4°
b = 10.9702 (6) Å µ = 0.20 mm1
c = 19.691 (1) Å T = 193 K
β = 90.761 (3)° Prism, yellow
V = 4727.6 (4) Å3 0.42 × 0.40 × 0.24 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4345 independent reflections
Radiation source: fine-focus sealed tube 3343 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −26→26
Tmin = 0.942, Tmax = 0.976 k = −13→11
19717 measured reflections l = −21→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0477P)2 + 3.4164P] where P = (Fo2 + 2Fc2)/3
4345 reflections (Δ/σ)max = 0.001
284 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SAINT/SADABS (Bruker, 2005) to sort, merge,and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atoms P1 and P2; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed some dependence on amplitude but little on resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.39722 (2) 0.68981 (5) 0.23551 (3) 0.02565 (14)
P2 0.48535 (2) 0.83242 (5) 0.33033 (2) 0.02367 (14)
C1 0.47465 (8) 0.68809 (17) 0.27827 (9) 0.0222 (4)
H1A 0.4790 0.6145 0.3079 0.027*
C2 0.39830 (9) 0.54854 (18) 0.18376 (10) 0.0280 (5)
C3 0.36720 (9) 0.5468 (2) 0.12096 (10) 0.0308 (5)
C4 0.36966 (10) 0.4409 (2) 0.08185 (11) 0.0401 (6)
H4A 0.3490 0.4391 0.0391 0.048*
C5 0.40112 (11) 0.3389 (2) 0.10330 (12) 0.0433 (6)
H5A 0.4026 0.2686 0.0752 0.052*
C6 0.43039 (11) 0.3389 (2) 0.16554 (12) 0.0414 (6)
H6A 0.4516 0.2685 0.1811 0.050*
C7 0.42855 (10) 0.44320 (19) 0.20526 (11) 0.0345 (5)
H7A 0.4485 0.4429 0.2484 0.041*
C8 0.33175 (10) 0.6547 (2) 0.09454 (11) 0.0376 (5)
H8A 0.3234 0.6441 0.0459 0.056*
H8B 0.3557 0.7292 0.1018 0.056*
H8C 0.2931 0.6612 0.1188 0.056*
C9 0.34259 (9) 0.63472 (19) 0.30004 (10) 0.0305 (5)
C10 0.28290 (10) 0.6830 (2) 0.30017 (11) 0.0385 (6)
C11 0.24123 (11) 0.6334 (3) 0.34590 (13) 0.0513 (7)
H11A 0.2008 0.6650 0.3466 0.062*
C12 0.25671 (12) 0.5408 (3) 0.38986 (13) 0.0561 (7)
H12A 0.2272 0.5089 0.4200 0.067*
C13 0.31522 (12) 0.4946 (2) 0.38997 (12) 0.0480 (6)
H13A 0.3265 0.4312 0.4205 0.058*
C14 0.35750 (10) 0.5414 (2) 0.34532 (11) 0.0369 (5)
H14A 0.3978 0.5090 0.3455 0.044*
C15 0.26167 (11) 0.7842 (2) 0.25435 (13) 0.0495 (6)
H15A 0.2318 0.8346 0.2781 0.074*
H15B 0.2427 0.7496 0.2133 0.074*
H15C 0.2967 0.8345 0.2417 0.074*
C16 0.40878 (9) 0.87239 (19) 0.36281 (10) 0.0276 (4)
C17 0.37778 (10) 0.9723 (2) 0.33442 (11) 0.0353 (5)
C18 0.32210 (11) 1.0061 (2) 0.36232 (12) 0.0470 (6)
H18A 0.3005 1.0731 0.3430 0.056*
C19 0.29730 (11) 0.9465 (2) 0.41646 (13) 0.0481 (7)
H19A 0.2592 0.9722 0.4341 0.058*
C20 0.32791 (10) 0.8488 (2) 0.44523 (12) 0.0389 (5)
H20A 0.3112 0.8068 0.4828 0.047*
C21 0.38290 (9) 0.8131 (2) 0.41877 (10) 0.0311 (5)
H21A 0.4040 0.7463 0.4389 0.037*
C22 0.40310 (13) 1.0441 (2) 0.27621 (13) 0.0538 (7)
H22A 0.3741 1.1083 0.2631 0.081*
H22B 0.4097 0.9897 0.2375 0.081*
H22C 0.4420 1.0812 0.2901 0.081*
C23 0.52007 (8) 0.78697 (18) 0.41210 (9) 0.0244 (4)
C24 0.55118 (9) 0.87983 (19) 0.44804 (10) 0.0307 (5)
C25 0.57354 (11) 0.8554 (2) 0.51278 (11) 0.0395 (6)
H25A 0.5939 0.9182 0.5374 0.047*
C26 0.56695 (11) 0.7426 (2) 0.54230 (11) 0.0410 (6)
H26A 0.5822 0.7284 0.5870 0.049*
C27 0.53823 (10) 0.6504 (2) 0.50693 (11) 0.0385 (5)
H27A 0.5343 0.5718 0.5267 0.046*
C28 0.51505 (9) 0.67275 (19) 0.44232 (10) 0.0308 (5)
H28A 0.4953 0.6087 0.4181 0.037*
C29 0.56121 (12) 1.0050 (2) 0.41859 (12) 0.0467 (6)
H29A 0.5803 1.0576 0.4530 0.070*
H29B 0.5218 1.0399 0.4044 0.070*
H29C 0.5880 0.9989 0.3792 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0244 (3) 0.0252 (3) 0.0273 (3) −0.0011 (2) −0.0027 (2) −0.0013 (2)
P2 0.0255 (3) 0.0219 (3) 0.0236 (3) 0.0003 (2) −0.0008 (2) −0.0012 (2)
C1 0.0225 (10) 0.0212 (10) 0.0230 (9) 0.0001 (8) 0.0004 (8) 0.0001 (8)
C2 0.0265 (10) 0.0289 (11) 0.0286 (11) −0.0079 (9) 0.0040 (8) −0.0023 (9)
C3 0.0264 (11) 0.0381 (12) 0.0279 (11) −0.0111 (9) 0.0049 (8) −0.0030 (9)
C4 0.0375 (13) 0.0503 (15) 0.0325 (12) −0.0131 (11) 0.0014 (10) −0.0090 (11)
C5 0.0476 (14) 0.0360 (14) 0.0467 (14) −0.0114 (11) 0.0092 (11) −0.0157 (11)
C6 0.0487 (14) 0.0270 (12) 0.0486 (14) −0.0040 (11) 0.0087 (11) −0.0049 (11)
C7 0.0402 (13) 0.0300 (12) 0.0335 (12) −0.0061 (10) 0.0035 (9) −0.0025 (9)
C8 0.0323 (12) 0.0480 (14) 0.0325 (11) −0.0062 (11) −0.0042 (9) −0.0013 (10)
C9 0.0270 (11) 0.0340 (12) 0.0305 (11) −0.0058 (9) 0.0004 (9) −0.0101 (9)
C10 0.0279 (11) 0.0482 (15) 0.0393 (12) −0.0022 (10) −0.0013 (9) −0.0190 (11)
C11 0.0289 (12) 0.077 (2) 0.0488 (15) −0.0046 (13) 0.0070 (11) −0.0227 (15)
C12 0.0441 (15) 0.078 (2) 0.0463 (15) −0.0204 (15) 0.0180 (12) −0.0119 (15)
C13 0.0509 (15) 0.0532 (16) 0.0401 (13) −0.0119 (13) 0.0099 (11) −0.0006 (12)
C14 0.0344 (12) 0.0395 (13) 0.0368 (12) −0.0050 (10) 0.0058 (10) −0.0041 (10)
C15 0.0350 (13) 0.0583 (17) 0.0550 (15) 0.0100 (12) −0.0064 (11) −0.0154 (13)
C16 0.0265 (10) 0.0278 (11) 0.0283 (10) 0.0020 (9) −0.0047 (8) −0.0078 (9)
C17 0.0386 (12) 0.0362 (13) 0.0310 (11) 0.0101 (10) −0.0051 (9) −0.0064 (10)
C18 0.0418 (14) 0.0529 (16) 0.0460 (14) 0.0241 (12) −0.0066 (11) −0.0060 (12)
C19 0.0307 (13) 0.0646 (18) 0.0491 (15) 0.0133 (12) 0.0015 (11) −0.0127 (13)
C20 0.0297 (12) 0.0483 (15) 0.0387 (12) −0.0013 (11) 0.0036 (10) −0.0087 (11)
C21 0.0284 (11) 0.0323 (12) 0.0325 (11) 0.0027 (9) −0.0001 (9) −0.0067 (9)
C22 0.0684 (18) 0.0474 (16) 0.0456 (15) 0.0237 (14) 0.0029 (13) 0.0111 (12)
C23 0.0215 (10) 0.0274 (11) 0.0244 (10) 0.0041 (8) 0.0018 (8) −0.0011 (8)
C24 0.0315 (11) 0.0307 (12) 0.0299 (11) 0.0024 (9) −0.0028 (9) −0.0066 (9)
C25 0.0444 (14) 0.0397 (14) 0.0343 (12) 0.0005 (11) −0.0072 (10) −0.0090 (11)
C26 0.0458 (14) 0.0513 (15) 0.0258 (11) 0.0071 (12) −0.0086 (10) −0.0026 (11)
C27 0.0453 (13) 0.0378 (13) 0.0324 (12) 0.0023 (11) −0.0007 (10) 0.0067 (10)
C28 0.0327 (11) 0.0311 (12) 0.0284 (10) −0.0019 (9) −0.0011 (9) −0.0011 (9)
C29 0.0640 (16) 0.0334 (13) 0.0422 (14) −0.0106 (12) −0.0127 (12) −0.0073 (11)

Geometric parameters (Å, °)

P1—C2 1.855 (2) C14—H14A 0.9500
P1—C9 1.857 (2) C15—H15A 0.9800
P1—C1 1.8824 (19) C15—H15B 0.9800
P2—C23 1.8401 (19) C15—H15C 0.9800
P2—C16 1.854 (2) C16—C17 1.402 (3)
P2—C1 1.8991 (19) C16—C21 1.405 (3)
C1—C1i 1.582 (4) C17—C18 1.394 (3)
C1—H1A 1.0000 C17—C22 1.502 (3)
C2—C7 1.395 (3) C18—C19 1.369 (3)
C2—C3 1.404 (3) C18—H18A 0.9500
C3—C4 1.396 (3) C19—C20 1.381 (3)
C3—C8 1.504 (3) C19—H19A 0.9500
C4—C5 1.377 (3) C20—C21 1.375 (3)
C4—H4A 0.9500 C20—H20A 0.9500
C5—C6 1.375 (3) C21—H21A 0.9500
C5—H5A 0.9500 C22—H22A 0.9800
C6—C7 1.387 (3) C22—H22B 0.9800
C6—H6A 0.9500 C22—H22C 0.9800
C7—H7A 0.9500 C23—C28 1.392 (3)
C8—H8A 0.9800 C23—C24 1.410 (3)
C8—H8B 0.9800 C24—C25 1.385 (3)
C8—H8C 0.9800 C24—C29 1.508 (3)
C9—C14 1.394 (3) C25—C26 1.376 (3)
C9—C10 1.410 (3) C25—H25A 0.9500
C10—C11 1.400 (3) C26—C27 1.375 (3)
C10—C15 1.501 (3) C26—H26A 0.9500
C11—C12 1.374 (4) C27—C28 1.385 (3)
C11—H11A 0.9500 C27—H27A 0.9500
C12—C13 1.377 (4) C28—H28A 0.9500
C12—H12A 0.9500 C29—H29A 0.9800
C13—C14 1.383 (3) C29—H29B 0.9800
C13—H13A 0.9500 C29—H29C 0.9800
C2—P1—C9 96.72 (9) C10—C15—H15A 109.5
C2—P1—C1 102.67 (9) C10—C15—H15B 109.5
C9—P1—C1 105.95 (9) H15A—C15—H15B 109.5
C23—P2—C16 97.29 (9) C10—C15—H15C 109.5
C23—P2—C1 107.04 (9) H15A—C15—H15C 109.5
C16—P2—C1 106.12 (8) H15B—C15—H15C 109.5
C1i—C1—P1 108.72 (16) C17—C16—C21 118.48 (19)
C1i—C1—P2 107.29 (9) C17—C16—P2 118.84 (16)
P1—C1—P2 109.69 (9) C21—C16—P2 122.44 (15)
C1i—C1—H1A 110.4 C18—C17—C16 118.2 (2)
P1—C1—H1A 110.4 C18—C17—C22 119.7 (2)
P2—C1—H1A 110.4 C16—C17—C22 122.2 (2)
C7—C2—C3 118.62 (19) C19—C18—C17 122.5 (2)
C7—C2—P1 122.33 (15) C19—C18—H18A 118.7
C3—C2—P1 119.05 (16) C17—C18—H18A 118.7
C4—C3—C2 118.4 (2) C18—C19—C20 119.7 (2)
C4—C3—C8 119.20 (19) C18—C19—H19A 120.2
C2—C3—C8 122.41 (19) C20—C19—H19A 120.2
C5—C4—C3 122.0 (2) C21—C20—C19 119.2 (2)
C5—C4—H4A 119.0 C21—C20—H20A 120.4
C3—C4—H4A 119.0 C19—C20—H20A 120.4
C6—C5—C4 119.9 (2) C20—C21—C16 121.9 (2)
C6—C5—H5A 120.1 C20—C21—H21A 119.0
C4—C5—H5A 120.1 C16—C21—H21A 119.0
C5—C6—C7 119.1 (2) C17—C22—H22A 109.5
C5—C6—H6A 120.4 C17—C22—H22B 109.5
C7—C6—H6A 120.4 H22A—C22—H22B 109.5
C6—C7—C2 122.0 (2) C17—C22—H22C 109.5
C6—C7—H7A 119.0 H22A—C22—H22C 109.5
C2—C7—H7A 119.0 H22B—C22—H22C 109.5
C3—C8—H8A 109.5 C28—C23—C24 118.42 (18)
C3—C8—H8B 109.5 C28—C23—P2 125.72 (15)
H8A—C8—H8B 109.5 C24—C23—P2 115.75 (15)
C3—C8—H8C 109.5 C25—C24—C23 119.0 (2)
H8A—C8—H8C 109.5 C25—C24—C29 118.57 (19)
H8B—C8—H8C 109.5 C23—C24—C29 122.45 (18)
C14—C9—C10 118.9 (2) C26—C25—C24 121.6 (2)
C14—C9—P1 121.96 (16) C26—C25—H25A 119.2
C10—C9—P1 118.96 (17) C24—C25—H25A 119.2
C11—C10—C9 117.9 (2) C27—C26—C25 119.8 (2)
C11—C10—C15 118.3 (2) C27—C26—H26A 120.1
C9—C10—C15 123.8 (2) C25—C26—H26A 120.1
C12—C11—C10 122.3 (2) C26—C27—C28 119.6 (2)
C12—C11—H11A 118.8 C26—C27—H27A 120.2
C10—C11—H11A 118.8 C28—C27—H27A 120.2
C11—C12—C13 119.6 (2) C27—C28—C23 121.5 (2)
C11—C12—H12A 120.2 C27—C28—H28A 119.3
C13—C12—H12A 120.2 C23—C28—H28A 119.3
C12—C13—C14 119.5 (3) C24—C29—H29A 109.5
C12—C13—H13A 120.2 C24—C29—H29B 109.5
C14—C13—H13A 120.2 H29A—C29—H29B 109.5
C13—C14—C9 121.7 (2) C24—C29—H29C 109.5
C13—C14—H14A 119.1 H29A—C29—H29C 109.5
C9—C14—H14A 119.1 H29B—C29—H29C 109.5
C2—P1—C1—C1i 59.35 (7) C11—C12—C13—C14 −0.6 (4)
C9—P1—C1—C1i 160.24 (7) C12—C13—C14—C9 0.2 (4)
C2—P1—C1—P2 176.38 (9) C10—C9—C14—C13 0.3 (3)
C9—P1—C1—P2 −82.73 (11) P1—C9—C14—C13 −175.23 (18)
C23—P2—C1—C1i −105.45 (15) C23—P2—C16—C17 142.76 (16)
C16—P2—C1—C1i 151.44 (14) C1—P2—C16—C17 −107.09 (16)
C23—P2—C1—P1 136.62 (9) C23—P2—C16—C21 −31.53 (18)
C16—P2—C1—P1 33.51 (12) C1—P2—C16—C21 78.62 (18)
C9—P1—C2—C7 −73.92 (18) C21—C16—C17—C18 −1.4 (3)
C1—P1—C2—C7 34.14 (19) P2—C16—C17—C18 −175.89 (17)
C9—P1—C2—C3 105.52 (16) C21—C16—C17—C22 177.7 (2)
C1—P1—C2—C3 −146.42 (15) P2—C16—C17—C22 3.2 (3)
C7—C2—C3—C4 −2.1 (3) C16—C17—C18—C19 0.8 (4)
P1—C2—C3—C4 178.47 (15) C22—C17—C18—C19 −178.3 (2)
C7—C2—C3—C8 178.14 (19) C17—C18—C19—C20 −0.1 (4)
P1—C2—C3—C8 −1.3 (3) C18—C19—C20—C21 −0.1 (4)
C2—C3—C4—C5 0.5 (3) C19—C20—C21—C16 −0.6 (3)
C8—C3—C4—C5 −179.7 (2) C17—C16—C21—C20 1.3 (3)
C3—C4—C5—C6 1.2 (3) P2—C16—C21—C20 175.60 (17)
C4—C5—C6—C7 −1.1 (3) C16—P2—C23—C28 83.90 (18)
C5—C6—C7—C2 −0.5 (3) C1—P2—C23—C28 −25.49 (19)
C3—C2—C7—C6 2.2 (3) C16—P2—C23—C24 −92.16 (16)
P1—C2—C7—C6 −178.40 (16) C1—P2—C23—C24 158.45 (15)
C2—P1—C9—C14 67.02 (18) C28—C23—C24—C25 −2.3 (3)
C1—P1—C9—C14 −38.25 (19) P2—C23—C24—C25 174.03 (16)
C2—P1—C9—C10 −108.55 (17) C28—C23—C24—C29 177.5 (2)
C1—P1—C9—C10 146.18 (16) P2—C23—C24—C29 −6.1 (3)
C14—C9—C10—C11 −0.4 (3) C23—C24—C25—C26 1.0 (3)
P1—C9—C10—C11 175.27 (16) C29—C24—C25—C26 −178.9 (2)
C14—C9—C10—C15 179.4 (2) C24—C25—C26—C27 0.8 (4)
P1—C9—C10—C15 −4.9 (3) C25—C26—C27—C28 −1.3 (3)
C9—C10—C11—C12 0.0 (3) C26—C27—C28—C23 −0.1 (3)
C15—C10—C11—C12 −179.8 (2) C24—C23—C28—C27 1.9 (3)
C10—C11—C12—C13 0.5 (4) P2—C23—C28—C27 −174.07 (16)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2629).

References

  1. Braunstein, P., Hasselbring, R., DeCian, A. & Fischer, J. (1995a). Bull. Soc. Chim. Fr.132, 691-695.
  2. Braunstein, P., Hasselbring, R., Tiripicchio, A. & Ugozzoli, F. (1995b). J. Chem. Soc. Chem. Commun. pp. 37–38.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). SAINT, XCIF and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). SADABS and TWINABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. CrystalMaker (1994). CrystalMaker CrystalMaker Software Ltd, Oxford, England. URL: www.CrystalMakercom.
  7. Schmidbaur, H. & Deschler, U. (1983). Chem. Ber.116, 1386–1392.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032942/ng2629sup1.cif

e-65-o2231-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032942/ng2629Isup2.hkl

e-65-o2231-Isup2.hkl (213KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES