Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 26;65(Pt 9):o2243. doi: 10.1107/S1600536809033194

(E)-Methyl N′-(3-methoxy­benzyl­idene)hydrazinecarboxyl­ate

Lu-Ping Lv a, Wen-Bo Yu a, Chun-Yu Huang b, Wei-Wei Li a, Xian-Chao Hu c,*
PMCID: PMC2970081  PMID: 21577641

Abstract

The title compound, C10H12N2O3, crystallizes with two independent mol­ecules in the asymmetric unit which differ in the orientation of the meth­oxy group. Each independent mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal structure, mol­ecules are linked into chains running along [001] by N—H⋯O and N—H⋯N hydrogen bonds. In addition, an inter­molecular C—H⋯π inter­action is observed.

Related literature

For general background to the properties of benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999); Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).graphic file with name e-65-o2243-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O3

  • M r = 208.22

  • Monoclinic, Inline graphic

  • a = 18.207 (3) Å

  • b = 7.3677 (12) Å

  • c = 16.552 (3) Å

  • β = 104.243 (5)°

  • V = 2152.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.24 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.977, T max = 0.989

  • 11364 measured reflections

  • 3790 independent reflections

  • 3033 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.109

  • S = 1.07

  • 3790 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033194/ci2891sup1.cif

e-65-o2243-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033194/ci2891Isup2.hkl

e-65-o2243-Isup2.hkl (182KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.86 2.07 2.9188 (18) 172
N4—H4⋯O2i 0.86 2.25 2.8365 (17) 126
N4—H4⋯N1i 0.86 2.55 3.3883 (19) 164
C11—H11BCg1ii 0.96 2.91 3.776 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C12–C17 ring.

Acknowledgments

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) and Hangzhou Vocational and Technical College for financial support.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the C═N bond. The N1/N2/O2/O3/C8/C9/C10 and N3/N4/O5/O6/C18/C19/C20 planes form dihedral angles of 4.51 (6)° and 13.80 (6)°, respectively, with the C2—C7 and C12—C17 planes. The dihedral angle between the two independent benzene rings is 59.18 (6)°. Bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).

In the crystal structure, molecules are linked into chains running along the [001] by N—H···O and N—H···N hydrogen bonds. In addition, an intermolecular C—H···π interaction is observed (Table 1).

Experimental

3-Methoxybenzaldehyde (1.36 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 95% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 436–438 K).

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12N2O3 F(000) = 880
Mr = 208.22 Dx = 1.285 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3790 reflections
a = 18.207 (3) Å θ = 2.3–25.0°
b = 7.3677 (12) Å µ = 0.10 mm1
c = 16.552 (3) Å T = 223 K
β = 104.243 (5)° Block, colourless
V = 2152.1 (6) Å3 0.24 × 0.21 × 0.19 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 3790 independent reflections
Radiation source: fine-focus sealed tube 3033 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −21→18
Tmin = 0.977, Tmax = 0.989 k = −8→8
11364 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.054P)2 + 0.3311P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.004
3790 reflections Δρmax = 0.20 e Å3
276 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0115 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.68188 (7) 1.33813 (15) −0.17091 (7) 0.0626 (3)
O2 0.86739 (7) 0.49630 (16) −0.12622 (7) 0.0661 (3)
O3 0.92117 (7) 0.34574 (16) −0.00794 (8) 0.0717 (4)
O4 0.55036 (7) 0.73143 (19) −0.03581 (8) 0.0788 (4)
O5 0.90715 (7) 0.5763 (2) 0.18325 (7) 0.0792 (4)
O6 0.96333 (6) 0.64573 (18) 0.31586 (7) 0.0690 (4)
N1 0.82614 (7) 0.75999 (16) −0.02931 (7) 0.0491 (3)
N2 0.86458 (7) 0.60387 (17) 0.00177 (8) 0.0545 (3)
H2 0.8769 0.5836 0.0546 0.065*
N3 0.77335 (7) 0.69523 (16) 0.21361 (7) 0.0492 (3)
N4 0.84157 (7) 0.68885 (19) 0.27209 (8) 0.0574 (4)
H4 0.8442 0.7210 0.3227 0.069*
C1 0.69744 (12) 1.2445 (3) −0.23962 (10) 0.0724 (5)
H1A 0.6782 1.3132 −0.2896 0.109*
H1B 0.6735 1.1276 −0.2449 0.109*
H1C 0.7512 1.2294 −0.2309 0.109*
C2 0.70930 (8) 1.2656 (2) −0.09344 (9) 0.0482 (4)
C3 0.70053 (9) 1.3743 (2) −0.02757 (10) 0.0559 (4)
H3 0.6774 1.4873 −0.0382 0.067*
C4 0.74387 (8) 1.0972 (2) −0.07774 (9) 0.0478 (4)
H4A 0.7500 1.0249 −0.1217 0.057*
C5 0.72602 (10) 1.3148 (2) 0.05299 (10) 0.0612 (4)
H5 0.7204 1.3879 0.0969 0.073*
C6 0.76013 (9) 1.1460 (2) 0.06930 (10) 0.0567 (4)
H6 0.7768 1.1058 0.1240 0.068*
C7 0.76944 (8) 1.0368 (2) 0.00429 (9) 0.0475 (4)
C8 0.80804 (9) 0.8620 (2) 0.02498 (9) 0.0510 (4)
H8 0.8199 0.8239 0.0802 0.061*
C9 0.88263 (9) 0.4835 (2) −0.05143 (10) 0.0522 (4)
C10 0.94571 (13) 0.2072 (3) −0.05631 (15) 0.0888 (6)
H10A 0.9814 0.1291 −0.0201 0.133*
H10B 0.9694 0.2625 −0.0960 0.133*
H10C 0.9028 0.1373 −0.0853 0.133*
C11 0.47641 (11) 0.7249 (3) −0.09038 (13) 0.0860 (6)
H11A 0.4804 0.7021 −0.1463 0.129*
H11B 0.4513 0.8388 −0.0885 0.129*
H11C 0.4478 0.6293 −0.0731 0.129*
C12 0.55619 (9) 0.7559 (2) 0.04734 (10) 0.0567 (4)
C13 0.49554 (11) 0.7833 (3) 0.08170 (14) 0.0777 (6)
H13 0.4464 0.7862 0.0480 0.093*
C14 0.62919 (9) 0.7513 (2) 0.09829 (10) 0.0518 (4)
H14 0.6700 0.7337 0.0747 0.062*
C15 0.50852 (12) 0.8064 (4) 0.16661 (15) 0.0962 (7)
H15 0.4676 0.8253 0.1899 0.115*
C16 0.58066 (11) 0.8024 (3) 0.21795 (13) 0.0812 (6)
H16 0.5882 0.8194 0.2751 0.097*
C17 0.64204 (9) 0.7725 (2) 0.18355 (10) 0.0531 (4)
C18 0.71842 (9) 0.7617 (2) 0.23885 (10) 0.0528 (4)
H18 0.7269 0.8041 0.2933 0.063*
C19 0.90395 (9) 0.6325 (2) 0.25016 (9) 0.0504 (4)
C20 1.03667 (10) 0.6043 (3) 0.30340 (14) 0.0839 (6)
H20A 1.0750 0.6610 0.3463 0.126*
H20B 1.0401 0.6489 0.2500 0.126*
H20C 1.0441 0.4752 0.3056 0.126*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0750 (8) 0.0619 (7) 0.0499 (6) 0.0148 (6) 0.0135 (5) 0.0052 (5)
O2 0.0832 (8) 0.0608 (7) 0.0546 (7) 0.0141 (6) 0.0177 (6) 0.0080 (5)
O3 0.0808 (9) 0.0605 (7) 0.0716 (8) 0.0215 (6) 0.0150 (6) 0.0188 (6)
O4 0.0582 (8) 0.1052 (10) 0.0640 (8) 0.0062 (7) −0.0020 (6) −0.0096 (7)
O5 0.0762 (9) 0.1133 (11) 0.0448 (7) 0.0302 (8) 0.0089 (6) −0.0079 (7)
O6 0.0538 (7) 0.0895 (9) 0.0555 (7) 0.0082 (6) −0.0021 (5) −0.0090 (6)
N1 0.0505 (8) 0.0482 (7) 0.0468 (7) 0.0021 (6) 0.0085 (6) 0.0069 (5)
N2 0.0622 (8) 0.0538 (7) 0.0444 (7) 0.0074 (6) 0.0071 (6) 0.0094 (6)
N3 0.0509 (8) 0.0497 (7) 0.0434 (7) −0.0003 (6) 0.0045 (6) −0.0027 (5)
N4 0.0532 (8) 0.0758 (9) 0.0387 (7) 0.0044 (7) 0.0026 (6) −0.0129 (6)
C1 0.0914 (14) 0.0770 (12) 0.0465 (9) 0.0169 (10) 0.0127 (9) 0.0039 (8)
C2 0.0458 (9) 0.0518 (8) 0.0477 (8) −0.0018 (7) 0.0126 (6) 0.0009 (6)
C3 0.0568 (10) 0.0507 (8) 0.0629 (10) 0.0035 (7) 0.0201 (8) −0.0039 (7)
C4 0.0493 (9) 0.0511 (8) 0.0437 (8) −0.0004 (7) 0.0129 (6) −0.0042 (6)
C5 0.0685 (11) 0.0645 (10) 0.0544 (10) 0.0014 (9) 0.0226 (8) −0.0122 (8)
C6 0.0589 (10) 0.0689 (10) 0.0438 (8) −0.0003 (8) 0.0157 (7) −0.0013 (7)
C7 0.0432 (8) 0.0536 (8) 0.0468 (8) −0.0038 (7) 0.0132 (6) 0.0006 (6)
C8 0.0519 (9) 0.0573 (9) 0.0431 (8) −0.0014 (7) 0.0104 (7) 0.0057 (7)
C9 0.0507 (9) 0.0493 (8) 0.0546 (9) 0.0015 (7) 0.0091 (7) 0.0112 (7)
C10 0.0927 (15) 0.0646 (11) 0.1145 (17) 0.0286 (11) 0.0360 (13) 0.0127 (11)
C11 0.0681 (13) 0.0987 (15) 0.0760 (13) −0.0005 (11) −0.0113 (10) −0.0085 (11)
C12 0.0513 (10) 0.0520 (9) 0.0634 (11) −0.0023 (7) 0.0077 (8) −0.0035 (7)
C13 0.0454 (10) 0.0951 (14) 0.0882 (15) −0.0051 (10) 0.0079 (9) −0.0067 (11)
C14 0.0457 (9) 0.0492 (8) 0.0596 (9) −0.0009 (7) 0.0112 (7) −0.0031 (7)
C15 0.0515 (12) 0.152 (2) 0.0911 (16) −0.0039 (13) 0.0284 (11) −0.0137 (15)
C16 0.0600 (12) 0.1185 (17) 0.0685 (12) −0.0066 (11) 0.0224 (10) −0.0107 (11)
C17 0.0496 (9) 0.0503 (8) 0.0601 (10) −0.0052 (7) 0.0149 (7) −0.0030 (7)
C18 0.0571 (10) 0.0539 (9) 0.0467 (8) −0.0048 (7) 0.0116 (7) −0.0053 (7)
C19 0.0565 (10) 0.0491 (8) 0.0414 (8) 0.0052 (7) 0.0044 (7) 0.0021 (6)
C20 0.0541 (12) 0.0970 (15) 0.0941 (15) 0.0160 (10) 0.0058 (10) 0.0073 (12)

Geometric parameters (Å, °)

O1—C2 1.3654 (18) C5—C6 1.387 (2)
O1—C1 1.417 (2) C5—H5 0.93
O2—C9 1.2039 (18) C6—C7 1.387 (2)
O3—C9 1.3387 (18) C6—H6 0.93
O3—C10 1.435 (2) C7—C8 1.467 (2)
O4—C12 1.366 (2) C8—H8 0.93
O4—C11 1.426 (2) C10—H10A 0.96
O5—C19 1.1971 (18) C10—H10B 0.96
O6—C19 1.3351 (18) C10—H10C 0.96
O6—C20 1.433 (2) C11—H11A 0.96
N1—C8 1.2757 (19) C11—H11B 0.96
N1—N2 1.3785 (17) C11—H11C 0.96
N2—C9 1.346 (2) C12—C13 1.376 (3)
N2—H2 0.86 C12—C14 1.388 (2)
N3—C18 1.273 (2) C13—C15 1.377 (3)
N3—N4 1.3749 (17) C13—H13 0.93
N4—C19 1.341 (2) C14—C17 1.381 (2)
N4—H4 0.86 C14—H14 0.93
C1—H1A 0.96 C15—C16 1.378 (3)
C1—H1B 0.96 C15—H15 0.93
C1—H1C 0.96 C16—C17 1.391 (2)
C2—C4 1.386 (2) C16—H16 0.93
C2—C3 1.393 (2) C17—C18 1.467 (2)
C3—C5 1.372 (2) C18—H18 0.93
C3—H3 0.93 C20—H20A 0.96
C4—C7 1.396 (2) C20—H20B 0.96
C4—H4A 0.93 C20—H20C 0.96
C2—O1—C1 117.64 (12) O3—C10—H10A 109.5
C9—O3—C10 115.68 (14) O3—C10—H10B 109.5
C12—O4—C11 118.03 (15) H10A—C10—H10B 109.5
C19—O6—C20 117.62 (14) O3—C10—H10C 109.5
C8—N1—N2 115.11 (12) H10A—C10—H10C 109.5
C9—N2—N1 119.26 (12) H10B—C10—H10C 109.5
C9—N2—H2 120.4 O4—C11—H11A 109.5
N1—N2—H2 120.4 O4—C11—H11B 109.5
C18—N3—N4 115.39 (13) H11A—C11—H11B 109.5
C19—N4—N3 119.91 (12) O4—C11—H11C 109.5
C19—N4—H4 120.0 H11A—C11—H11C 109.5
N3—N4—H4 120.0 H11B—C11—H11C 109.5
O1—C1—H1A 109.5 O4—C12—C13 124.38 (16)
O1—C1—H1B 109.5 O4—C12—C14 115.73 (15)
H1A—C1—H1B 109.5 C13—C12—C14 119.90 (16)
O1—C1—H1C 109.5 C12—C13—C15 119.10 (17)
H1A—C1—H1C 109.5 C12—C13—H13 120.4
H1B—C1—H1C 109.5 C15—C13—H13 120.4
O1—C2—C4 124.80 (13) C17—C14—C12 120.93 (16)
O1—C2—C3 115.07 (13) C17—C14—H14 119.5
C4—C2—C3 120.13 (14) C12—C14—H14 119.5
C5—C3—C2 120.02 (15) C13—C15—C16 121.65 (19)
C5—C3—H3 120.0 C13—C15—H15 119.2
C2—C3—H3 120.0 C16—C15—H15 119.2
C2—C4—C7 119.68 (14) C15—C16—C17 119.41 (19)
C2—C4—H4A 120.2 C15—C16—H16 120.3
C7—C4—H4A 120.2 C17—C16—H16 120.3
C3—C5—C6 120.27 (15) C14—C17—C16 119.00 (16)
C3—C5—H5 119.9 C14—C17—C18 121.84 (15)
C6—C5—H5 119.9 C16—C17—C18 119.15 (16)
C7—C6—C5 120.23 (15) N3—C18—C17 121.13 (14)
C7—C6—H6 119.9 N3—C18—H18 119.4
C5—C6—H6 119.9 C17—C18—H18 119.4
C6—C7—C4 119.66 (14) O5—C19—O6 124.39 (15)
C6—C7—C8 118.10 (13) O5—C19—N4 126.52 (14)
C4—C7—C8 122.22 (14) O6—C19—N4 109.08 (13)
N1—C8—C7 123.03 (13) O6—C20—H20A 109.5
N1—C8—H8 118.5 O6—C20—H20B 109.5
C7—C8—H8 118.5 H20A—C20—H20B 109.5
O2—C9—O3 124.75 (15) O6—C20—H20C 109.5
O2—C9—N2 126.11 (14) H20A—C20—H20C 109.5
O3—C9—N2 109.14 (13) H20B—C20—H20C 109.5
C8—N1—N2—C9 176.68 (14) N1—N2—C9—O3 178.40 (12)
C18—N3—N4—C19 −175.58 (14) C11—O4—C12—C13 −3.2 (3)
C1—O1—C2—C4 −7.6 (2) C11—O4—C12—C14 176.59 (15)
C1—O1—C2—C3 172.35 (15) O4—C12—C13—C15 180.0 (2)
O1—C2—C3—C5 179.99 (15) C14—C12—C13—C15 0.2 (3)
C4—C2—C3—C5 −0.1 (2) O4—C12—C14—C17 −179.29 (14)
O1—C2—C4—C7 −179.72 (14) C13—C12—C14—C17 0.5 (2)
C3—C2—C4—C7 0.4 (2) C12—C13—C15—C16 −0.2 (4)
C2—C3—C5—C6 −0.4 (3) C13—C15—C16—C17 −0.6 (4)
C3—C5—C6—C7 0.7 (3) C12—C14—C17—C16 −1.3 (2)
C5—C6—C7—C4 −0.4 (2) C12—C14—C17—C18 177.79 (14)
C5—C6—C7—C8 178.06 (15) C15—C16—C17—C14 1.3 (3)
C2—C4—C7—C6 −0.1 (2) C15—C16—C17—C18 −177.8 (2)
C2—C4—C7—C8 −178.51 (13) N4—N3—C18—C17 −178.49 (13)
N2—N1—C8—C7 177.72 (13) C14—C17—C18—N3 −15.0 (2)
C6—C7—C8—N1 −172.84 (15) C16—C17—C18—N3 164.04 (17)
C4—C7—C8—N1 5.6 (2) C20—O6—C19—O5 5.5 (2)
C10—O3—C9—O2 0.7 (2) C20—O6—C19—N4 −175.48 (15)
C10—O3—C9—N2 −178.90 (15) N3—N4—C19—O5 −3.8 (3)
N1—N2—C9—O2 −1.2 (2) N3—N4—C19—O6 177.20 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O5 0.86 2.07 2.9188 (18) 172
N4—H4···O2i 0.86 2.25 2.8365 (17) 126
N4—H4···N1i 0.86 2.55 3.3883 (19) 164
C11—H11B···Cg1ii 0.96 2.91 3.776 (3) 150

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2891).

References

  1. Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [DOI] [PubMed]
  2. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  4. Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.
  5. Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  6. Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  7. Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033194/ci2891sup1.cif

e-65-o2243-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033194/ci2891Isup2.hkl

e-65-o2243-Isup2.hkl (182KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES