Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2070–o2071. doi: 10.1107/S1600536809029754

Ethyl 4-butyl­amino-3-nitro­benzoate

Shivanagere Nagojappa Narendra Babu a, Aisyah Saad Abdul Rahim a,, Shafida Abd Hamid b, Kasthuri Balasubramani c, Hoong-Kun Fun c,*,§
PMCID: PMC2970083  PMID: 21577493

Abstract

In the crystal structure of the title compound, C13H18N2O4, the asymmetric unit consists of three crystallographically independent ethyl 4-butyl­amino-3-nitro­benzoate mol­ecules. There is an intra­molecular N—H⋯O hydrogen bond in each mol­ecule, which generates an S(6) ring motif. The structure is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For nitro­benzoic acid, see: Brouillette et al. (1999); Williams et al. (1995); For benzimdazole derivatives, see Ozden et al. (2005); Beaulieu et al. (2004); Kilburn et al. (2000).graphic file with name e-65-o2070-scheme1.jpg

Experimental

Crystal data

  • C13H18N2O4

  • M r = 266.29

  • Monoclinic, Inline graphic

  • a = 65.292 (2) Å

  • b = 3.9555 (2) Å

  • c = 31.4417 (11) Å

  • β = 104.833 (3)°

  • V = 7849.6 (5) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.40 × 0.19 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.915, T max = 0.997

  • 85498 measured reflections

  • 8991 independent reflections

  • 6753 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.177

  • S = 1.13

  • 8991 reflections

  • 532 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029754/bq2152sup1.cif

e-65-o2070-sup1.cif (34.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029754/bq2152Isup2.hkl

e-65-o2070-Isup2.hkl (431KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O4Ai 0.89 (3) 2.51 (3) 3.345 (3) 156 (3)
C1A—H1AA⋯O3Aii 0.96 2.41 3.267 (3) 149
N2B—H2NB⋯O4B 0.83 (3) 2.02 (3) 2.637 (3) 130 (3)
N2A—H2NA⋯O4A 0.89 (3) 1.97 (3) 2.636 (3) 131 (3)
N2C—H2NC⋯O4C 0.82 (3) 2.02 (4) 2.635 (3) 132 (3)
C10A—H10F⋯O1B 0.97 2.58 3.542 (4) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SNNB, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB acknowledges the USM for a Postdoctoral Research Fellowship. HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest (Brouillette et al. 1999; Williams et al. 1995). The synthesis of novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives (Ozden et al. 2005), non-nucleoside benzimidazole-based allosteric inhibitors of the hepatitis C virus ns5b polymerase inhibitors (Beaulieu et al. 2004) and solid-phase synthesis of substituted 2-aminomethyl benzimidazoles (Kilburn et al. 2000) were commonly accessed via nitrobenzoic acid derivatives. As part of an ongoing study on such compounds, in this paper, we present the crystal structure of the title compound, (I), which was synthesized as an intermediate.

The asymmetric unit of (I) consists of three crystallographically independent ethyl 4-(butylamino)-3-nitrobenzoate molecules (A, B & C), as shown in Fig. 1. Three intramolecular N—H···O hydrogen bonds generate S(6) ring motifs (Table 1).

In the crystal structure, in two molecules (A & B), the hydrogen atom attached to the nitrogen atom is hydrogen-bonded to the nitro group oxygen atoms via N—H···O hydrogen bonds to form tandem hydrogen bonds. Here both the hydrogen atoms act as bifurcated donor and the oxygen atom act as bifurcated acceptor. In addition, these neighboring molecules are linked by C—H···O hydrogen bonds along the [1 0 0] direction. Interestingly enough, the molecules C are not linked by any intermolecular interactions (Fig. 2).

Experimental

The title compound was synthesized by adding N,N-diisopropyl ethylamine (DIPEA) (0.20 ml, 1.12 mmol) dropwise to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (0.21 g, 1 mmol) in dry dichloromethane (10 ml). Butylamine (0.10 ml, 1 mmol) was added slowly with stirring, and then the mixture was stirred overnight at room temperature under N2. After completion of the reaction, the mixture was washed with 10% Na2CO3 (10 ml). The aqueous layer was washed again with dichloromethane (3 × 10 ml). The organic fractions were pooled, dried over MgSO4 and the solvent was evaporated in vacuo. Recrystallization with hot hexane afforded the title compound as yellow needle-like crystals.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The nitrogen H atoms were located from the difference Fourier map [N–H = 0.82 (3)–0.89 (3) Å] and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate hydrogen bonding.

Fig. 2.

Fig. 2.

Part of the crystal packing (I). Dashed lines indicate the hydrogen bonding.

Crystal data

C13H18N2O4 F(000) = 3408
Mr = 266.29 Dx = 1.352 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 8010 reflections
a = 65.292 (2) Å θ = 0.00–0.00°
b = 3.9555 (2) Å µ = 0.10 mm1
c = 31.4417 (11) Å T = 100 K
β = 104.833 (3)° Needle, yellow
V = 7849.6 (5) Å3 0.40 × 0.19 × 0.03 mm
Z = 24

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 8991 independent reflections
Radiation source: fine-focus sealed tube 6753 reflections with I > 2σ(I)
graphite Rint = 0.090
φ and ω scans θmax = 27.5°, θmin = 0.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −84→84
Tmin = 0.915, Tmax = 0.997 k = −5→5
85498 measured reflections l = −40→40

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.04P)2 + 36.3175P] where P = (Fo2 + 2Fc2)/3
8991 reflections (Δ/σ)max < 0.001
532 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.06501 (3) −0.0471 (6) 0.49353 (6) 0.0262 (5)
O2A 0.03378 (3) 0.2100 (5) 0.48936 (6) 0.0201 (4)
O3A −0.00677 (3) 0.6630 (6) 0.35544 (6) 0.0252 (5)
O4A 0.00171 (3) 0.6139 (6) 0.29354 (6) 0.0229 (5)
N1A 0.00508 (4) 0.5558 (6) 0.33362 (8) 0.0188 (5)
N2A 0.03624 (4) 0.2884 (7) 0.28855 (8) 0.0178 (5)
C1A 0.01824 (5) 0.2944 (9) 0.54946 (9) 0.0257 (7)
H1AA 0.0207 0.2875 0.5809 0.039*
H1AB 0.0068 0.1440 0.5363 0.039*
H1AC 0.0146 0.5206 0.5392 0.039*
C2A 0.03805 (4) 0.1864 (8) 0.53679 (9) 0.0215 (6)
H2AA 0.0498 0.3326 0.5506 0.026*
H2AB 0.0417 −0.0440 0.5463 0.026*
C3A 0.04914 (4) 0.0866 (8) 0.47201 (9) 0.0187 (6)
C4A 0.04423 (4) 0.1364 (7) 0.42388 (9) 0.0170 (6)
C5A 0.02675 (4) 0.3068 (7) 0.39999 (9) 0.0165 (6)
H5AA 0.0169 0.3886 0.4141 0.020*
C6A 0.02354 (4) 0.3594 (7) 0.35516 (9) 0.0169 (6)
C7A 0.03814 (4) 0.2401 (7) 0.33173 (9) 0.0165 (6)
C8A 0.05587 (4) 0.0581 (7) 0.35738 (9) 0.0176 (6)
H8AA 0.0657 −0.0304 0.3436 0.021*
C9A 0.05883 (4) 0.0099 (8) 0.40161 (9) 0.0181 (6)
H9AA 0.0707 −0.1083 0.4173 0.022*
C10A 0.05237 (4) 0.1805 (8) 0.26671 (9) 0.0180 (6)
H10E 0.0547 −0.0607 0.2708 0.022*
H10F 0.0656 0.2956 0.2798 0.022*
C11A 0.04547 (4) 0.2598 (8) 0.21793 (9) 0.0185 (6)
H11E 0.0416 0.4967 0.2140 0.022*
H11F 0.0330 0.1267 0.2044 0.022*
C12A 0.06284 (4) 0.1846 (8) 0.19501 (9) 0.0191 (6)
H12E 0.0668 −0.0515 0.1994 0.023*
H12F 0.0752 0.3201 0.2083 0.023*
C13A 0.05590 (5) 0.2592 (9) 0.14579 (9) 0.0257 (7)
H13G 0.0668 0.1890 0.1322 0.038*
H13H 0.0535 0.4974 0.1413 0.038*
H13I 0.0431 0.1380 0.1329 0.038*
O1B 0.09697 (3) 0.7037 (6) 0.30897 (7) 0.0264 (5)
O2B 0.12968 (3) 0.9272 (6) 0.32094 (6) 0.0230 (5)
O3B 0.17262 (3) 1.0571 (6) 0.46621 (7) 0.0286 (5)
O4B 0.16496 (3) 0.8443 (6) 0.52368 (6) 0.0248 (5)
N1B 0.16074 (3) 0.8951 (7) 0.48336 (8) 0.0195 (5)
N2B 0.12866 (4) 0.5300 (7) 0.51718 (8) 0.0188 (5)
C1B 0.14493 (5) 1.1508 (9) 0.26583 (10) 0.0293 (7)
H1BA 0.1423 1.2167 0.2355 0.044*
H1BB 0.1557 0.9798 0.2722 0.044*
H1BC 0.1496 1.3437 0.2843 0.044*
C2B 0.12485 (4) 1.0126 (9) 0.27447 (9) 0.0240 (7)
H2BA 0.1137 1.1807 0.2674 0.029*
H2BB 0.1202 0.8133 0.2566 0.029*
C3B 0.11389 (4) 0.7744 (8) 0.33400 (9) 0.0191 (6)
C4B 0.11916 (4) 0.7104 (8) 0.38191 (9) 0.0183 (6)
C5B 0.13752 (4) 0.8196 (8) 0.41074 (9) 0.0188 (6)
H5BA 0.1476 0.9339 0.4001 0.023*
C6B 0.14114 (4) 0.7609 (7) 0.45575 (9) 0.0169 (6)
C7B 0.12620 (4) 0.5899 (7) 0.47410 (9) 0.0159 (6)
C8B 0.10746 (4) 0.4822 (8) 0.44326 (9) 0.0199 (6)
H8BA 0.0971 0.3703 0.4534 0.024*
C9B 0.10416 (4) 0.5381 (8) 0.39906 (9) 0.0194 (6)
H9BA 0.0917 0.4605 0.3799 0.023*
C10B 0.11209 (4) 0.3819 (7) 0.53512 (9) 0.0174 (6)
H10C 0.1083 0.1602 0.5223 0.021*
H10D 0.0995 0.5234 0.5276 0.021*
C11B 0.11981 (4) 0.3507 (8) 0.58467 (9) 0.0197 (6)
H11C 0.1247 0.5696 0.5971 0.024*
H11D 0.1317 0.1954 0.5919 0.024*
C12B 0.10245 (4) 0.2244 (8) 0.60518 (9) 0.0217 (6)
H12C 0.0973 0.0079 0.5924 0.026*
H12D 0.0907 0.3826 0.5986 0.026*
C13B 0.11062 (5) 0.1861 (10) 0.65495 (10) 0.0344 (8)
H13D 0.0994 0.1052 0.6669 0.052*
H13E 0.1155 0.4013 0.6678 0.052*
H13F 0.1221 0.0277 0.6615 0.052*
O1C 0.23186 (3) 1.0386 (6) 0.33479 (6) 0.0234 (5)
O2C 0.19996 (3) 1.2945 (6) 0.31998 (6) 0.0206 (4)
O3C 0.15980 (3) 1.4495 (6) 0.17315 (7) 0.0270 (5)
O4C 0.16732 (3) 1.2089 (6) 0.11696 (6) 0.0241 (5)
N1C 0.17152 (3) 1.2711 (6) 0.15709 (8) 0.0184 (5)
N2C 0.20352 (4) 0.8875 (6) 0.12565 (8) 0.0168 (5)
C1C 0.18335 (5) 1.5198 (9) 0.37305 (10) 0.0257 (7)
H1CA 0.1854 1.5871 0.4032 0.039*
H1CB 0.1723 1.3526 0.3658 0.039*
H1CC 0.1793 1.7131 0.3543 0.039*
C2C 0.20364 (5) 1.3733 (8) 0.36649 (9) 0.0222 (6)
H2CA 0.2151 1.5354 0.3753 0.027*
H2CB 0.2074 1.1703 0.3840 0.027*
C3C 0.21578 (4) 1.1305 (7) 0.30853 (9) 0.0179 (6)
C4C 0.21160 (4) 1.0758 (7) 0.26043 (9) 0.0162 (6)
C5C 0.19371 (4) 1.1935 (7) 0.23052 (9) 0.0157 (5)
H5CA 0.1836 1.3132 0.2404 0.019*
C6C 0.19066 (4) 1.1347 (7) 0.18548 (9) 0.0157 (6)
C7C 0.20581 (4) 0.9571 (7) 0.16860 (9) 0.0146 (5)
C8C 0.22437 (4) 0.8497 (7) 0.20039 (9) 0.0158 (6)
H8CA 0.2350 0.7410 0.1909 0.019*
C9C 0.22695 (4) 0.9016 (7) 0.24435 (9) 0.0163 (6)
H9CA 0.2391 0.8205 0.2642 0.020*
C10C 0.22007 (4) 0.7308 (8) 0.10874 (9) 0.0177 (6)
H10A 0.2241 0.5161 0.1234 0.021*
H10B 0.2325 0.8756 0.1148 0.021*
C11C 0.21220 (4) 0.6747 (8) 0.05957 (9) 0.0180 (6)
H11A 0.2072 0.8876 0.0454 0.022*
H11B 0.2003 0.5188 0.0539 0.022*
C12C 0.22942 (4) 0.5331 (8) 0.03965 (9) 0.0197 (6)
H12A 0.2347 0.3234 0.0544 0.024*
H12B 0.2411 0.6920 0.0446 0.024*
C13C 0.22125 (5) 0.4672 (8) −0.00982 (9) 0.0245 (7)
H13A 0.2325 0.3744 −0.0209 0.037*
H13B 0.2165 0.6758 −0.0247 0.037*
H13C 0.2097 0.3100 −0.0149 0.037*
H2NB 0.1398 (5) 0.593 (9) 0.5348 (10) 0.020 (8)*
H2NA 0.0249 (5) 0.402 (9) 0.2736 (11) 0.028 (9)*
H2NC 0.1923 (5) 0.941 (10) 0.1086 (11) 0.031 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0196 (10) 0.0369 (13) 0.0205 (10) 0.0087 (10) 0.0024 (8) 0.0007 (10)
O2A 0.0190 (10) 0.0275 (12) 0.0135 (9) 0.0031 (9) 0.0034 (8) −0.0003 (8)
O3A 0.0217 (10) 0.0356 (13) 0.0196 (10) 0.0082 (10) 0.0073 (8) 0.0022 (10)
O4A 0.0197 (10) 0.0314 (13) 0.0172 (10) 0.0040 (9) 0.0043 (8) 0.0028 (9)
N1A 0.0162 (11) 0.0206 (13) 0.0207 (12) −0.0002 (10) 0.0068 (9) −0.0007 (10)
N2A 0.0159 (11) 0.0208 (13) 0.0171 (12) 0.0009 (10) 0.0047 (9) 0.0001 (10)
C1A 0.0283 (16) 0.0309 (18) 0.0176 (14) 0.0024 (14) 0.0054 (12) −0.0006 (13)
C2A 0.0240 (14) 0.0269 (16) 0.0122 (13) 0.0025 (13) 0.0018 (11) 0.0018 (12)
C3A 0.0161 (13) 0.0203 (15) 0.0202 (14) −0.0013 (11) 0.0054 (11) −0.0033 (12)
C4A 0.0144 (13) 0.0190 (15) 0.0176 (13) −0.0029 (11) 0.0040 (10) −0.0005 (11)
C5A 0.0148 (12) 0.0178 (14) 0.0179 (13) −0.0021 (11) 0.0057 (10) −0.0006 (11)
C6A 0.0138 (12) 0.0164 (14) 0.0198 (14) −0.0021 (11) 0.0029 (10) −0.0006 (11)
C7A 0.0158 (13) 0.0155 (14) 0.0188 (14) −0.0042 (11) 0.0053 (10) −0.0026 (11)
C8A 0.0125 (12) 0.0193 (15) 0.0219 (14) −0.0006 (11) 0.0057 (11) −0.0035 (12)
C9A 0.0130 (12) 0.0205 (15) 0.0198 (14) −0.0021 (11) 0.0021 (10) 0.0022 (12)
C10A 0.0175 (13) 0.0187 (15) 0.0193 (14) 0.0000 (11) 0.0073 (11) −0.0010 (12)
C11A 0.0149 (13) 0.0219 (15) 0.0193 (14) −0.0008 (11) 0.0055 (11) −0.0027 (12)
C12A 0.0179 (13) 0.0187 (15) 0.0217 (14) 0.0012 (11) 0.0072 (11) −0.0004 (12)
C13A 0.0261 (15) 0.0282 (18) 0.0242 (16) 0.0009 (13) 0.0091 (12) −0.0009 (13)
O1B 0.0195 (10) 0.0355 (13) 0.0224 (11) −0.0074 (10) 0.0022 (8) −0.0008 (10)
O2B 0.0163 (10) 0.0352 (13) 0.0175 (10) −0.0057 (9) 0.0045 (8) 0.0021 (9)
O3B 0.0199 (10) 0.0415 (14) 0.0237 (11) −0.0123 (10) 0.0045 (9) 0.0017 (10)
O4B 0.0189 (10) 0.0381 (13) 0.0154 (10) −0.0051 (9) 0.0008 (8) 0.0010 (9)
N1B 0.0130 (11) 0.0241 (14) 0.0210 (13) −0.0010 (10) 0.0038 (9) −0.0006 (10)
N2B 0.0140 (11) 0.0228 (13) 0.0191 (12) −0.0029 (10) 0.0032 (10) −0.0010 (10)
C1B 0.0282 (16) 0.0359 (19) 0.0233 (16) −0.0036 (15) 0.0053 (13) 0.0032 (14)
C2B 0.0205 (14) 0.0333 (18) 0.0172 (14) −0.0028 (13) 0.0027 (11) 0.0011 (13)
C3B 0.0162 (13) 0.0199 (15) 0.0217 (14) −0.0008 (11) 0.0058 (11) −0.0023 (12)
C4B 0.0143 (13) 0.0209 (15) 0.0198 (14) −0.0005 (11) 0.0043 (11) −0.0015 (12)
C5B 0.0141 (13) 0.0208 (15) 0.0227 (15) −0.0007 (11) 0.0071 (11) −0.0013 (12)
C6B 0.0128 (12) 0.0180 (14) 0.0196 (14) 0.0002 (11) 0.0036 (10) −0.0021 (11)
C7B 0.0139 (12) 0.0166 (14) 0.0171 (13) 0.0031 (11) 0.0039 (10) 0.0004 (11)
C8B 0.0151 (13) 0.0208 (15) 0.0244 (15) −0.0012 (11) 0.0063 (11) −0.0029 (12)
C9B 0.0143 (13) 0.0201 (15) 0.0225 (14) −0.0029 (11) 0.0022 (11) −0.0049 (12)
C10B 0.0131 (12) 0.0182 (15) 0.0219 (14) −0.0005 (11) 0.0062 (11) 0.0008 (12)
C11B 0.0174 (13) 0.0208 (15) 0.0218 (15) −0.0011 (12) 0.0066 (11) 0.0013 (12)
C12B 0.0204 (14) 0.0261 (17) 0.0196 (14) −0.0027 (12) 0.0067 (11) 0.0003 (12)
C13B 0.0307 (17) 0.051 (2) 0.0226 (16) −0.0128 (17) 0.0083 (13) 0.0041 (16)
O1C 0.0148 (10) 0.0350 (13) 0.0185 (10) 0.0006 (9) 0.0007 (8) −0.0032 (9)
O2C 0.0179 (10) 0.0288 (12) 0.0141 (9) 0.0017 (9) 0.0022 (7) −0.0049 (9)
O3C 0.0205 (10) 0.0375 (14) 0.0228 (11) 0.0125 (10) 0.0053 (8) 0.0009 (10)
O4C 0.0192 (10) 0.0361 (13) 0.0155 (10) 0.0058 (9) 0.0016 (8) −0.0018 (9)
N1C 0.0143 (11) 0.0222 (13) 0.0194 (12) 0.0006 (10) 0.0056 (9) 0.0006 (10)
N2C 0.0141 (11) 0.0207 (13) 0.0152 (12) 0.0015 (10) 0.0030 (9) 0.0004 (10)
C1C 0.0250 (15) 0.0306 (18) 0.0219 (15) 0.0012 (13) 0.0068 (12) −0.0049 (13)
C2C 0.0233 (14) 0.0294 (17) 0.0121 (13) −0.0020 (13) 0.0012 (11) −0.0041 (12)
C3C 0.0157 (13) 0.0173 (15) 0.0204 (14) −0.0034 (11) 0.0043 (11) −0.0018 (11)
C4C 0.0147 (12) 0.0149 (14) 0.0188 (13) −0.0048 (11) 0.0043 (10) −0.0002 (11)
C5C 0.0147 (12) 0.0159 (14) 0.0175 (13) −0.0029 (11) 0.0057 (10) −0.0006 (11)
C6C 0.0116 (12) 0.0176 (14) 0.0165 (13) −0.0004 (10) 0.0012 (10) 0.0037 (11)
C7C 0.0135 (12) 0.0124 (13) 0.0183 (13) −0.0019 (10) 0.0048 (10) 0.0011 (11)
C8C 0.0119 (12) 0.0153 (14) 0.0201 (14) 0.0009 (10) 0.0038 (10) 0.0008 (11)
C9C 0.0139 (12) 0.0144 (14) 0.0189 (14) −0.0015 (11) 0.0011 (10) 0.0009 (11)
C10C 0.0146 (12) 0.0204 (15) 0.0184 (14) 0.0015 (11) 0.0048 (10) 0.0001 (12)
C11C 0.0157 (13) 0.0200 (15) 0.0179 (14) 0.0008 (11) 0.0033 (10) −0.0005 (12)
C12C 0.0187 (13) 0.0200 (15) 0.0214 (14) 0.0014 (12) 0.0072 (11) −0.0001 (12)
C13C 0.0261 (15) 0.0265 (17) 0.0225 (15) 0.0039 (13) 0.0091 (12) 0.0011 (13)

Geometric parameters (Å, °)

O1A—C3A 1.205 (3) C5B—H5BA 0.9300
O2A—C3A 1.350 (3) C6B—C7B 1.425 (4)
O2A—C2A 1.449 (3) C7B—C8B 1.418 (4)
O3A—N1A 1.233 (3) C8B—C9B 1.369 (4)
O4A—N1A 1.244 (3) C8B—H8BA 0.9300
N1A—C6A 1.448 (4) C9B—H9BA 0.9300
N2A—C7A 1.345 (3) C10B—C11B 1.515 (4)
N2A—C10A 1.460 (3) C10B—H10C 0.9700
N2A—H2NA 0.89 (3) C10B—H10D 0.9700
C1A—C2A 1.510 (4) C11B—C12B 1.524 (4)
C1A—H1AA 0.9600 C11B—H11C 0.9700
C1A—H1AB 0.9600 C11B—H11D 0.9700
C1A—H1AC 0.9600 C12B—C13B 1.526 (4)
C2A—H2AA 0.9700 C12B—H12C 0.9700
C2A—H2AB 0.9700 C12B—H12D 0.9700
C3A—C4A 1.478 (4) C13B—H13D 0.9600
C4A—C5A 1.372 (4) C13B—H13E 0.9600
C4A—C9A 1.411 (4) C13B—H13F 0.9600
C5A—C6A 1.387 (4) O1C—C3C 1.213 (3)
C5A—H5AA 0.9300 O2C—C3C 1.345 (3)
C6A—C7A 1.426 (4) O2C—C2C 1.454 (3)
C7A—C8A 1.425 (4) O3C—N1C 1.239 (3)
C8A—C9A 1.368 (4) O4C—N1C 1.245 (3)
C8A—H8AA 0.9300 N1C—C6C 1.442 (3)
C9A—H9AA 0.9300 N2C—C7C 1.348 (3)
C10A—C11A 1.516 (4) N2C—C10C 1.460 (3)
C10A—H10E 0.9700 N2C—H2NC 0.82 (3)
C10A—H10F 0.9700 C1C—C2C 1.508 (4)
C11A—C12A 1.521 (4) C1C—H1CA 0.9600
C11A—H11E 0.9700 C1C—H1CB 0.9600
C11A—H11F 0.9700 C1C—H1CC 0.9600
C12A—C13A 1.526 (4) C2C—H2CA 0.9700
C12A—H12E 0.9700 C2C—H2CB 0.9700
C12A—H12F 0.9700 C3C—C4C 1.482 (4)
C13A—H13G 0.9600 C4C—C5C 1.379 (4)
C13A—H13H 0.9600 C4C—C9C 1.412 (4)
C13A—H13I 0.9600 C5C—C6C 1.398 (4)
O1B—C3B 1.214 (3) C5C—H5CA 0.9300
O2B—C3B 1.346 (3) C6C—C7C 1.422 (4)
O2B—C2B 1.454 (3) C7C—C8C 1.424 (4)
O3B—N1B 1.232 (3) C8C—C9C 1.364 (4)
O4B—N1B 1.243 (3) C8C—H8CA 0.9300
N1B—C6B 1.451 (3) C9C—H9CA 0.9300
N2B—C7B 1.344 (3) C10C—C11C 1.515 (4)
N2B—C10B 1.465 (3) C10C—H10A 0.9700
N2B—H2NB 0.83 (3) C10C—H10B 0.9700
C1B—C2B 1.508 (4) C11C—C12C 1.526 (4)
C1B—H1BA 0.9600 C11C—H11A 0.9700
C1B—H1BB 0.9600 C11C—H11B 0.9700
C1B—H1BC 0.9600 C12C—C13C 1.532 (4)
C2B—H2BA 0.9700 C12C—H12A 0.9700
C2B—H2BB 0.9700 C12C—H12B 0.9700
C3B—C4B 1.479 (4) C13C—H13A 0.9600
C4B—C5B 1.374 (4) C13C—H13B 0.9600
C4B—C9B 1.409 (4) C13C—H13C 0.9600
C5B—C6B 1.393 (4)
C3A—O2A—C2A 115.2 (2) N2B—C7B—C6B 125.0 (2)
O3A—N1A—O4A 121.8 (2) C8B—C7B—C6B 115.2 (2)
O3A—N1A—C6A 119.3 (2) C9B—C8B—C7B 122.0 (3)
O4A—N1A—C6A 118.9 (2) C9B—C8B—H8BA 119.0
C7A—N2A—C10A 122.8 (2) C7B—C8B—H8BA 119.0
C7A—N2A—H2NA 117 (2) C8B—C9B—C4B 121.5 (3)
C10A—N2A—H2NA 120 (2) C8B—C9B—H9BA 119.3
C2A—C1A—H1AA 109.5 C4B—C9B—H9BA 119.3
C2A—C1A—H1AB 109.5 N2B—C10B—C11B 110.1 (2)
H1AA—C1A—H1AB 109.5 N2B—C10B—H10C 109.6
C2A—C1A—H1AC 109.5 C11B—C10B—H10C 109.6
H1AA—C1A—H1AC 109.5 N2B—C10B—H10D 109.6
H1AB—C1A—H1AC 109.5 C11B—C10B—H10D 109.6
O2A—C2A—C1A 107.5 (2) H10C—C10B—H10D 108.1
O2A—C2A—H2AA 110.2 C10B—C11B—C12B 111.9 (2)
C1A—C2A—H2AA 110.2 C10B—C11B—H11C 109.2
O2A—C2A—H2AB 110.2 C12B—C11B—H11C 109.2
C1A—C2A—H2AB 110.2 C10B—C11B—H11D 109.2
H2AA—C2A—H2AB 108.5 C12B—C11B—H11D 109.2
O1A—C3A—O2A 123.6 (3) H11C—C11B—H11D 107.9
O1A—C3A—C4A 124.3 (3) C11B—C12B—C13B 111.3 (2)
O2A—C3A—C4A 112.1 (2) C11B—C12B—H12C 109.4
C5A—C4A—C9A 118.4 (3) C13B—C12B—H12C 109.4
C5A—C4A—C3A 123.9 (2) C11B—C12B—H12D 109.4
C9A—C4A—C3A 117.7 (2) C13B—C12B—H12D 109.4
C4A—C5A—C6A 121.2 (3) H12C—C12B—H12D 108.0
C4A—C5A—H5AA 119.4 C12B—C13B—H13D 109.5
C6A—C5A—H5AA 119.4 C12B—C13B—H13E 109.5
C5A—C6A—C7A 121.9 (3) H13D—C13B—H13E 109.5
C5A—C6A—N1A 116.6 (2) C12B—C13B—H13F 109.5
C7A—C6A—N1A 121.5 (2) H13D—C13B—H13F 109.5
N2A—C7A—C8A 119.6 (2) H13E—C13B—H13F 109.5
N2A—C7A—C6A 125.0 (3) C3C—O2C—C2C 115.6 (2)
C8A—C7A—C6A 115.4 (2) O3C—N1C—O4C 121.8 (2)
C9A—C8A—C7A 121.9 (3) O3C—N1C—C6C 119.2 (2)
C9A—C8A—H8AA 119.0 O4C—N1C—C6C 119.0 (2)
C7A—C8A—H8AA 119.0 C7C—N2C—C10C 123.3 (2)
C8A—C9A—C4A 121.2 (3) C7C—N2C—H2NC 117 (2)
C8A—C9A—H9AA 119.4 C10C—N2C—H2NC 120 (2)
C4A—C9A—H9AA 119.4 C2C—C1C—H1CA 109.5
N2A—C10A—C11A 110.6 (2) C2C—C1C—H1CB 109.5
N2A—C10A—H10E 109.5 H1CA—C1C—H1CB 109.5
C11A—C10A—H10E 109.5 C2C—C1C—H1CC 109.5
N2A—C10A—H10F 109.5 H1CA—C1C—H1CC 109.5
C11A—C10A—H10F 109.5 H1CB—C1C—H1CC 109.5
H10E—C10A—H10F 108.1 O2C—C2C—C1C 107.2 (2)
C10A—C11A—C12A 112.0 (2) O2C—C2C—H2CA 110.3
C10A—C11A—H11E 109.2 C1C—C2C—H2CA 110.3
C12A—C11A—H11E 109.2 O2C—C2C—H2CB 110.3
C10A—C11A—H11F 109.2 C1C—C2C—H2CB 110.3
C12A—C11A—H11F 109.2 H2CA—C2C—H2CB 108.5
H11E—C11A—H11F 107.9 O1C—C3C—O2C 123.5 (3)
C11A—C12A—C13A 112.3 (2) O1C—C3C—C4C 123.5 (3)
C11A—C12A—H12E 109.2 O2C—C3C—C4C 113.0 (2)
C13A—C12A—H12E 109.2 C5C—C4C—C9C 118.4 (2)
C11A—C12A—H12F 109.2 C5C—C4C—C3C 123.3 (2)
C13A—C12A—H12F 109.2 C9C—C4C—C3C 118.3 (2)
H12E—C12A—H12F 107.9 C4C—C5C—C6C 120.7 (3)
C12A—C13A—H13G 109.5 C4C—C5C—H5CA 119.6
C12A—C13A—H13H 109.5 C6C—C5C—H5CA 119.6
H13G—C13A—H13H 109.5 C5C—C6C—C7C 121.8 (2)
C12A—C13A—H13I 109.5 C5C—C6C—N1C 116.2 (2)
H13G—C13A—H13I 109.5 C7C—C6C—N1C 122.0 (2)
H13H—C13A—H13I 109.5 N2C—C7C—C6C 124.4 (2)
C3B—O2B—C2B 115.1 (2) N2C—C7C—C8C 119.9 (2)
O3B—N1B—O4B 122.0 (2) C6C—C7C—C8C 115.7 (2)
O3B—N1B—C6B 119.1 (2) C9C—C8C—C7C 121.9 (2)
O4B—N1B—C6B 118.9 (2) C9C—C8C—H8CA 119.1
C7B—N2B—C10B 123.3 (2) C7C—C8C—H8CA 119.1
C7B—N2B—H2NB 118 (2) C8C—C9C—C4C 121.4 (2)
C10B—N2B—H2NB 118 (2) C8C—C9C—H9CA 119.3
C2B—C1B—H1BA 109.5 C4C—C9C—H9CA 119.3
C2B—C1B—H1BB 109.5 N2C—C10C—C11C 110.2 (2)
H1BA—C1B—H1BB 109.5 N2C—C10C—H10A 109.6
C2B—C1B—H1BC 109.5 C11C—C10C—H10A 109.6
H1BA—C1B—H1BC 109.5 N2C—C10C—H10B 109.6
H1BB—C1B—H1BC 109.5 C11C—C10C—H10B 109.6
O2B—C2B—C1B 106.9 (2) H10A—C10C—H10B 108.1
O2B—C2B—H2BA 110.3 C10C—C11C—C12C 112.3 (2)
C1B—C2B—H2BA 110.3 C10C—C11C—H11A 109.1
O2B—C2B—H2BB 110.3 C12C—C11C—H11A 109.1
C1B—C2B—H2BB 110.3 C10C—C11C—H11B 109.1
H2BA—C2B—H2BB 108.6 C12C—C11C—H11B 109.1
O1B—C3B—O2B 123.1 (3) H11A—C11C—H11B 107.9
O1B—C3B—C4B 123.8 (3) C11C—C12C—C13C 112.2 (2)
O2B—C3B—C4B 113.0 (2) C11C—C12C—H12A 109.2
C5B—C4B—C9B 118.3 (3) C13C—C12C—H12A 109.2
C5B—C4B—C3B 123.7 (3) C11C—C12C—H12B 109.2
C9B—C4B—C3B 118.0 (2) C13C—C12C—H12B 109.2
C4B—C5B—C6B 120.7 (3) H12A—C12C—H12B 107.9
C4B—C5B—H5BA 119.7 C12C—C13C—H13A 109.5
C6B—C5B—H5BA 119.7 C12C—C13C—H13B 109.5
C5B—C6B—C7B 122.3 (2) H13A—C13C—H13B 109.5
C5B—C6B—N1B 116.2 (2) C12C—C13C—H13C 109.5
C7B—C6B—N1B 121.5 (2) H13A—C13C—H13C 109.5
N2B—C7B—C8B 119.7 (3) H13B—C13C—H13C 109.5
C3A—O2A—C2A—C1A −173.0 (3) C10B—N2B—C7B—C8B −5.3 (4)
C2A—O2A—C3A—O1A 2.9 (4) C10B—N2B—C7B—C6B 174.0 (3)
C2A—O2A—C3A—C4A −176.8 (2) C5B—C6B—C7B—N2B −179.0 (3)
O1A—C3A—C4A—C5A −175.9 (3) N1B—C6B—C7B—N2B −1.3 (4)
O2A—C3A—C4A—C5A 3.8 (4) C5B—C6B—C7B—C8B 0.3 (4)
O1A—C3A—C4A—C9A 2.0 (5) N1B—C6B—C7B—C8B 178.0 (3)
O2A—C3A—C4A—C9A −178.3 (3) N2B—C7B—C8B—C9B 179.8 (3)
C9A—C4A—C5A—C6A −1.0 (4) C6B—C7B—C8B—C9B 0.4 (4)
C3A—C4A—C5A—C6A 176.9 (3) C7B—C8B—C9B—C4B −0.9 (5)
C4A—C5A—C6A—C7A 0.0 (4) C5B—C4B—C9B—C8B 0.7 (4)
C4A—C5A—C6A—N1A −177.2 (3) C3B—C4B—C9B—C8B −177.1 (3)
O3A—N1A—C6A—C5A −0.5 (4) C7B—N2B—C10B—C11B −179.5 (3)
O4A—N1A—C6A—C5A 178.9 (3) N2B—C10B—C11B—C12B 175.3 (2)
O3A—N1A—C6A—C7A −177.7 (3) C10B—C11B—C12B—C13B 178.6 (3)
O4A—N1A—C6A—C7A 1.7 (4) C3C—O2C—C2C—C1C −173.9 (3)
C10A—N2A—C7A—C8A −4.0 (4) C2C—O2C—C3C—O1C 3.0 (4)
C10A—N2A—C7A—C6A 175.8 (3) C2C—O2C—C3C—C4C −176.6 (2)
C5A—C6A—C7A—N2A −178.5 (3) O1C—C3C—C4C—C5C −177.1 (3)
N1A—C6A—C7A—N2A −1.4 (4) O2C—C3C—C4C—C5C 2.5 (4)
C5A—C6A—C7A—C8A 1.3 (4) O1C—C3C—C4C—C9C 1.3 (4)
N1A—C6A—C7A—C8A 178.3 (2) O2C—C3C—C4C—C9C −179.1 (2)
N2A—C7A—C8A—C9A 178.2 (3) C9C—C4C—C5C—C6C 1.4 (4)
C6A—C7A—C8A—C9A −1.6 (4) C3C—C4C—C5C—C6C 179.8 (3)
C7A—C8A—C9A—C4A 0.6 (4) C4C—C5C—C6C—C7C −0.9 (4)
C5A—C4A—C9A—C8A 0.7 (4) C4C—C5C—C6C—N1C −179.5 (3)
C3A—C4A—C9A—C8A −177.3 (3) O3C—N1C—C6C—C5C 5.1 (4)
C7A—N2A—C10A—C11A 178.3 (3) O4C—N1C—C6C—C5C −175.6 (2)
N2A—C10A—C11A—C12A 174.0 (2) O3C—N1C—C6C—C7C −173.6 (3)
C10A—C11A—C12A—C13A 179.2 (3) O4C—N1C—C6C—C7C 5.8 (4)
C3B—O2B—C2B—C1B −175.0 (3) C10C—N2C—C7C—C6C 174.5 (3)
C2B—O2B—C3B—O1B 1.8 (4) C10C—N2C—C7C—C8C −5.7 (4)
C2B—O2B—C3B—C4B −176.7 (2) C5C—C6C—C7C—N2C 178.7 (3)
O1B—C3B—C4B—C5B −173.5 (3) N1C—C6C—C7C—N2C −2.8 (4)
O2B—C3B—C4B—C5B 5.0 (4) C5C—C6C—C7C—C8C −1.2 (4)
O1B—C3B—C4B—C9B 4.2 (5) N1C—C6C—C7C—C8C 177.4 (2)
O2B—C3B—C4B—C9B −177.3 (3) N2C—C7C—C8C—C9C −177.1 (3)
C9B—C4B—C5B—C6B 0.0 (4) C6C—C7C—C8C—C9C 2.7 (4)
C3B—C4B—C5B—C6B 177.7 (3) C7C—C8C—C9C—C4C −2.3 (4)
C4B—C5B—C6B—C7B −0.5 (4) C5C—C4C—C9C—C8C 0.1 (4)
C4B—C5B—C6B—N1B −178.3 (3) C3C—C4C—C9C—C8C −178.4 (3)
O3B—N1B—C6B—C5B 1.8 (4) C7C—N2C—C10C—C11C 177.8 (3)
O4B—N1B—C6B—C5B −178.6 (3) N2C—C10C—C11C—C12C 176.1 (2)
O3B—N1B—C6B—C7B −176.1 (3) C10C—C11C—C12C—C13C 178.4 (2)
O4B—N1B—C6B—C7B 3.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2A—H2NA···O4Ai 0.89 (3) 2.51 (3) 3.345 (3) 156 (3)
C1A—H1AA···O3Aii 0.96 2.41 3.267 (3) 149
N2B—H2NB···O4B 0.83 (3) 2.02 (3) 2.637 (3) 130 (3)
N2A—H2NA···O4A 0.89 (3) 1.97 (3) 2.636 (3) 131 (3)
N2C—H2NC···O4C 0.82 (3) 2.02 (4) 2.635 (3) 132 (3)
C10A—H10F···O1B 0.97 2.58 3.542 (4) 169

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2152).

References

  1. Beaulieu, P. L., Bousquet, Y., Gauthier, J., Gilard, J., Marquis, M., McKercher, G., Pellerin, C., Valois, S. & Kukolj, G. (2004). J. Med. Chem.47, 6884–6892. [DOI] [PubMed]
  2. Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett.9, 1901–1906. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kilburn, J. P., Lau, J. & Jones, R. C. F. (2000). Tetrahedron Lett.41, 5419–5421.
  5. Ozden, S., Atabey, D., Yildiz, S. & Goker, H. (2005). Bioorg. Med. Chem.13, 1587–1597. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett.5, 2251–2254.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029754/bq2152sup1.cif

e-65-o2070-sup1.cif (34.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029754/bq2152Isup2.hkl

e-65-o2070-Isup2.hkl (431KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES