Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):o2257. doi: 10.1107/S1600536809033728

4-[(2-Hydr­oxy-1-naphth­yl)(piperidin-1-yl)meth­yl]benzonitrile

Yuan Zhang a, Yong Hua Li a,*
PMCID: PMC2970085  PMID: 21577653

Abstract

In the title compound, C23H22N2O, obtained from the condensation reaction of 4-formyl­benzonitrile, 2-naphthol and piperidine, the dihedral angle between the naphthalene ring system and the benzene ring is 75.31 (4)°. The piperidine ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular C—H⋯N hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. An intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For applications of Betti-type reactions, see: Zhao & Li et al. (2004); Lu et al. (2002); Xu et al. (2004); Wang et al. (2005)graphic file with name e-65-o2257-scheme1.jpg

Experimental

Crystal data

  • C23H22N2O

  • M r = 342.43

  • Monoclinic, Inline graphic

  • a = 6.9989 (6) Å

  • b = 15.588 (1) Å

  • c = 17.211 (1) Å

  • β = 101.207 (2)°

  • V = 1841.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.2 × 0.1 × 0.1 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku, 2005) T min = 0.98, T max = 0.98

  • 10945 measured reflections

  • 3245 independent reflections

  • 2661 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.108

  • S = 1.05

  • 3245 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033728/lx2110sup1.cif

e-65-o2257-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033728/lx2110Isup2.hkl

e-65-o2257-Isup2.hkl (159.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.99 1.70 2.614 151
C14—H14⋯N1i 0.93 2.55 3.395 (2) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a start-up grant (4007041028) and a science technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

supplementary crystallographic information

Comment

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base (Zhao & Li et al. 2004). Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Here we report the synthesis and crystal structure of the title compound, 4-[(2-hydroxy-1-naphthyl)(1-piperidinyl)methyl]benzonitrile (Fig. 1).

The naphthalene (A; C1-C10), benzene (B; C12-C17) and piperidine (C; N2/C19-C23) rings are planar and the dihedral angles between A/B, A/C, and B/C are 75.31 (4)°, 67.24 (5)°, and 88.80 (5)°, respectively. The crystal structure (Fig. 2) is stabilized by intermolecular C–H···N hydrogen bonds between an H atom of benzene ring and the N atom of the nitrile group, with a C14–H14···N1i (Table 1 and Fig. 2), which link the molecules into centrosymmetric dimers. In addition, the crystal structure exhibits an intramolecular O–H···N hydrogen bond, with a O1–H1···N2 (Table 1 and Fig. 2).

Experimental

4-Formylbenzonitrile (1.97 g, 0.015 mol) and piperidine (1.275 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-4:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

H atoms bonded to O atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93-0.97 Å and Uiso(H) = 1.3-1.6Ueq(C).

Figures

Fig. 1.

Fig. 1.

Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

C–H···N and O–H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code : (i) - x + 2, - y, - z + 2.]

Crystal data

C23H22N2O F(000) = 728
Mr = 342.43 Dx = 1.235 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3760 reflections
a = 6.9989 (6) Å θ = 2.1–26.0°
b = 15.588 (1) Å µ = 0.08 mm1
c = 17.211 (1) Å T = 296 K
β = 101.207 (2)° Prism, colorless
V = 1841.9 (3) Å3 0.2 × 0.1 × 0.1 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3245 independent reflections
Radiation source: fine-focus sealed tube 2661 reflections with I > 2σ(I)
graphite Rint = 0.023
CCD_Profile_fitting scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (CrystalClear, Rigaku, 2005) h = −6→8
Tmin = 0.98, Tmax = 0.98 k = −19→18
10945 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: difference Fourier map
wR(F2) = 0.108 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2574P] where P = (Fo2 + 2Fc2)/3
3245 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4754 (2) 0.29551 (10) 0.68027 (8) 0.0440 (4)
C2 0.3079 (2) 0.33944 (11) 0.68632 (9) 0.0530 (4)
C3 0.1365 (2) 0.32981 (13) 0.62827 (11) 0.0654 (5)
H3 0.0261 0.3612 0.6326 0.078*
C4 0.1307 (2) 0.27582 (13) 0.56662 (10) 0.0646 (5)
H4 0.0163 0.2705 0.5290 0.078*
C5 0.2951 (2) 0.22744 (11) 0.55839 (9) 0.0525 (4)
C6 0.2914 (3) 0.16868 (12) 0.49529 (10) 0.0660 (5)
H6 0.1773 0.1627 0.4577 0.079*
C7 0.4480 (3) 0.12125 (12) 0.48807 (10) 0.0699 (5)
H7 0.4413 0.0827 0.4464 0.084*
C8 0.6191 (3) 0.13057 (12) 0.54346 (10) 0.0653 (5)
H8 0.7275 0.0980 0.5386 0.078*
C9 0.6308 (2) 0.18670 (10) 0.60497 (9) 0.0539 (4)
H9 0.7479 0.1918 0.6410 0.065*
C10 0.4703 (2) 0.23747 (10) 0.61557 (8) 0.0444 (4)
C11 0.6626 (2) 0.30548 (9) 0.74220 (8) 0.0413 (3)
H11 0.7723 0.2984 0.7150 0.050*
C12 0.6784 (2) 0.23582 (9) 0.80461 (8) 0.0420 (3)
C13 0.8360 (2) 0.18047 (11) 0.81721 (9) 0.0552 (4)
H13 0.9315 0.1863 0.7868 0.066*
C14 0.8543 (3) 0.11701 (11) 0.87378 (10) 0.0616 (5)
H14 0.9603 0.0799 0.8809 0.074*
C15 0.7144 (2) 0.10873 (10) 0.92003 (9) 0.0508 (4)
C16 0.5568 (2) 0.16398 (10) 0.90883 (9) 0.0524 (4)
H16 0.4634 0.1593 0.9404 0.063*
C17 0.5384 (2) 0.22595 (10) 0.85088 (9) 0.0487 (4)
H17 0.4301 0.2618 0.8426 0.058*
C18 0.7349 (2) 0.04403 (12) 0.98061 (10) 0.0602 (4)
C19 0.8407 (2) 0.39901 (10) 0.84592 (9) 0.0522 (4)
H19A 0.9609 0.3843 0.8290 0.063*
H19B 0.8212 0.3579 0.8860 0.063*
C20 0.8583 (3) 0.48792 (11) 0.88137 (10) 0.0648 (5)
H20A 0.9686 0.4897 0.9253 0.078*
H20B 0.7419 0.5010 0.9018 0.078*
C21 0.8851 (3) 0.55474 (11) 0.82047 (10) 0.0667 (5)
H21A 0.8842 0.6117 0.8431 0.080*
H21B 1.0093 0.5463 0.8046 0.080*
C22 0.7218 (3) 0.54656 (11) 0.74953 (11) 0.0644 (5)
H22A 0.7440 0.5860 0.7086 0.077*
H22B 0.5997 0.5621 0.7645 0.077*
C23 0.70745 (10) 0.45642 (4) 0.71727 (4) 0.0536 (4)
H23A 0.5997 0.4530 0.6724 0.064*
H23B 0.8260 0.4425 0.6987 0.064*
O1 0.29677 (10) 0.39454 (4) 0.74661 (4) 0.0697 (4)
H1 0.4335 0.4016 0.7749 0.094 (7)*
N1 0.75228 (10) −0.00682 (4) 1.02933 (4) 0.0807 (5)
N2 0.67754 (10) 0.39314 (4) 0.77784 (4) 0.0440 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0432 (8) 0.0496 (9) 0.0387 (8) 0.0036 (7) 0.0065 (6) 0.0061 (7)
C2 0.0494 (9) 0.0591 (10) 0.0518 (9) 0.0081 (7) 0.0131 (7) 0.0037 (8)
C3 0.0420 (9) 0.0822 (13) 0.0717 (12) 0.0114 (8) 0.0105 (8) 0.0137 (10)
C4 0.0477 (10) 0.0830 (13) 0.0578 (10) −0.0052 (9) −0.0029 (8) 0.0136 (10)
C5 0.0512 (9) 0.0594 (11) 0.0440 (8) −0.0103 (8) 0.0023 (7) 0.0102 (8)
C6 0.0754 (12) 0.0720 (12) 0.0439 (9) −0.0245 (10) −0.0050 (8) 0.0024 (9)
C7 0.0973 (15) 0.0600 (12) 0.0518 (10) −0.0129 (11) 0.0128 (10) −0.0106 (9)
C8 0.0822 (13) 0.0589 (11) 0.0544 (10) 0.0052 (9) 0.0123 (9) −0.0108 (9)
C9 0.0580 (10) 0.0560 (10) 0.0459 (9) 0.0041 (8) 0.0055 (7) −0.0043 (8)
C10 0.0487 (8) 0.0459 (9) 0.0378 (8) −0.0035 (7) 0.0062 (6) 0.0065 (7)
C11 0.0429 (8) 0.0429 (8) 0.0385 (7) 0.0048 (6) 0.0086 (6) −0.0007 (6)
C12 0.0470 (8) 0.0397 (8) 0.0369 (7) 0.0018 (6) 0.0023 (6) −0.0046 (6)
C13 0.0564 (10) 0.0612 (11) 0.0494 (9) 0.0161 (8) 0.0139 (7) 0.0094 (8)
C14 0.0642 (11) 0.0632 (11) 0.0571 (10) 0.0230 (9) 0.0108 (9) 0.0128 (9)
C15 0.0601 (10) 0.0470 (9) 0.0418 (8) 0.0005 (7) 0.0015 (7) 0.0024 (7)
C16 0.0587 (10) 0.0518 (10) 0.0476 (9) −0.0017 (8) 0.0122 (7) 0.0020 (7)
C17 0.0518 (9) 0.0440 (9) 0.0504 (9) 0.0058 (7) 0.0099 (7) 0.0015 (7)
C18 0.0642 (11) 0.0609 (11) 0.0526 (10) 0.0036 (8) 0.0042 (8) 0.0089 (9)
C19 0.0622 (10) 0.0503 (9) 0.0417 (8) −0.0038 (8) 0.0040 (7) 0.0016 (7)
C20 0.0842 (13) 0.0561 (11) 0.0537 (10) −0.0122 (9) 0.0126 (9) −0.0089 (8)
C21 0.0853 (13) 0.0460 (10) 0.0701 (11) −0.0093 (9) 0.0186 (10) −0.0056 (9)
C22 0.0784 (12) 0.0445 (10) 0.0725 (11) 0.0058 (8) 0.0204 (10) 0.0086 (9)
C23 0.0667 (10) 0.0486 (9) 0.0453 (9) 0.0064 (8) 0.0101 (7) 0.0076 (7)
O1 0.0583 (8) 0.0808 (9) 0.0726 (8) 0.0192 (6) 0.0193 (6) −0.0094 (7)
N1 0.0778 (11) 0.0886 (12) 0.0752 (10) 0.0136 (9) 0.0138 (9) 0.0347 (10)
N2 0.0529 (7) 0.0407 (7) 0.0382 (6) 0.0048 (5) 0.0081 (6) 0.0009 (5)

Geometric parameters (Å, °)

C1—C2 1.379 (2) C14—C15 1.383 (2)
C1—C10 1.430 (2) C14—H14 0.9300
C1—C11 1.528 (2) C15—C16 1.384 (2)
C2—O1 1.3609 (2) C15—C18 1.438 (2)
C2—C3 1.412 (2) C16—C17 1.377 (2)
C3—C4 1.348 (2) C16—H16 0.9300
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.406 (2) C18—N1 1.1430 (18)
C4—H4 0.9300 C19—N2 1.4713 (16)
C5—C6 1.417 (2) C19—C20 1.510 (2)
C5—C10 1.424 (2) C19—H19A 0.9700
C6—C7 1.348 (3) C19—H19B 0.9700
C6—H6 0.9300 C20—C21 1.515 (2)
C7—C8 1.386 (3) C20—H20A 0.9700
C7—H7 0.9300 C20—H20B 0.9700
C8—C9 1.363 (2) C21—C22 1.507 (2)
C8—H8 0.9300 C21—H21A 0.9700
C9—C10 1.415 (2) C21—H21B 0.9700
C9—H9 0.9300 C22—C23 1.5069 (18)
C11—N2 1.4931 (2) C22—H22A 0.9700
C11—C12 1.5163 (19) C22—H22B 0.9700
C11—H11 0.9800 C23—N2 1.4793
C12—C13 1.384 (2) C23—H23A 0.9700
C12—C17 1.386 (2) C23—H23B 0.9700
C13—C14 1.376 (2) O1—H1 0.9916
C13—H13 0.9300
C2—C1—C10 118.69 (13) C14—C15—C16 119.78 (14)
C2—C1—C11 121.54 (13) C14—C15—C18 120.07 (15)
C10—C1—C11 119.74 (12) C16—C15—C18 120.15 (15)
O1—C2—C1 123.11 (14) C17—C16—C15 119.83 (15)
O1—C2—C3 116.13 (14) C17—C16—H16 120.1
C1—C2—C3 120.75 (15) C15—C16—H16 120.1
C4—C3—C2 121.00 (16) C16—C17—C12 121.15 (14)
C4—C3—H3 119.5 C16—C17—H17 119.4
C2—C3—H3 119.5 C12—C17—H17 119.4
C3—C4—C5 120.90 (16) N1—C18—C15 179.28 (18)
C3—C4—H4 119.6 N2—C19—C20 111.64 (13)
C5—C4—H4 119.6 N2—C19—H19A 109.3
C4—C5—C6 122.03 (16) C20—C19—H19A 109.3
C4—C5—C10 118.90 (15) N2—C19—H19B 109.3
C6—C5—C10 119.07 (16) C20—C19—H19B 109.3
C7—C6—C5 122.08 (17) H19A—C19—H19B 108.0
C7—C6—H6 119.0 C19—C20—C21 111.28 (14)
C5—C6—H6 119.0 C19—C20—H20A 109.4
C6—C7—C8 119.25 (17) C21—C20—H20A 109.4
C6—C7—H7 120.4 C19—C20—H20B 109.4
C8—C7—H7 120.4 C21—C20—H20B 109.4
C9—C8—C7 121.01 (18) H20A—C20—H20B 108.0
C9—C8—H8 119.5 C22—C21—C20 109.03 (15)
C7—C8—H8 119.5 C22—C21—H21A 109.9
C8—C9—C10 121.97 (16) C20—C21—H21A 109.9
C8—C9—H9 119.0 C22—C21—H21B 109.9
C10—C9—H9 119.0 C20—C21—H21B 109.9
C9—C10—C5 116.63 (14) H21A—C21—H21B 108.3
C9—C10—C1 123.65 (13) C21—C22—C23 111.30 (13)
C5—C10—C1 119.71 (14) C21—C22—H22A 109.4
N2—C11—C12 112.00 (10) C23—C22—H22A 109.4
N2—C11—C1 111.23 (10) C21—C22—H22B 109.4
C12—C11—C1 110.86 (11) C23—C22—H22B 109.4
N2—C11—H11 107.5 H22A—C22—H22B 108.0
C12—C11—H11 107.5 N2—C23—C22 111.75 (7)
C1—C11—H11 107.5 N2—C23—H23A 109.3
C13—C12—C17 118.14 (14) C22—C23—H23A 109.3
C13—C12—C11 120.24 (13) N2—C23—H23B 109.3
C17—C12—C11 121.61 (13) C22—C23—H23B 109.3
C14—C13—C12 121.40 (15) H23A—C23—H23B 107.9
C14—C13—H13 119.3 C2—O1—H1 104.6
C12—C13—H13 119.3 C19—N2—C23 109.00 (7)
C13—C14—C15 119.67 (15) C19—N2—C11 111.46 (9)
C13—C14—H14 120.2 C23—N2—C11 109.20 (6)
C15—C14—H14 120.2
C10—C1—C2—O1 178.47 (12) N2—C11—C12—C13 −114.13 (14)
C11—C1—C2—O1 0.41 (2) C1—C11—C12—C13 121.01 (15)
C10—C1—C2—C3 −2.3 (2) N2—C11—C12—C17 65.30 (16)
C11—C1—C2—C3 179.62 (14) C1—C11—C12—C17 −59.56 (17)
O1—C2—C3—C4 −178.99 (15) C17—C12—C13—C14 0.2 (2)
C1—C2—C3—C4 1.8 (3) C11—C12—C13—C14 179.64 (15)
C2—C3—C4—C5 0.0 (3) C12—C13—C14—C15 −1.0 (3)
C3—C4—C5—C6 178.39 (16) C13—C14—C15—C16 0.3 (3)
C3—C4—C5—C10 −1.2 (2) C13—C14—C15—C18 −178.43 (16)
C4—C5—C6—C7 −178.88 (17) C14—C15—C16—C17 1.1 (2)
C10—C5—C6—C7 0.7 (2) C18—C15—C16—C17 179.81 (14)
C5—C6—C7—C8 −0.7 (3) C15—C16—C17—C12 −1.8 (2)
C6—C7—C8—C9 0.1 (3) C13—C12—C17—C16 1.2 (2)
C7—C8—C9—C10 0.4 (3) C11—C12—C17—C16 −178.23 (13)
C8—C9—C10—C5 −0.3 (2) C14—C15—C18—N1 90 (16)
C8—C9—C10—C1 178.46 (15) C16—C15—C18—N1 −89 (16)
C4—C5—C10—C9 179.41 (14) N2—C19—C20—C21 −57.87 (19)
C6—C5—C10—C9 −0.2 (2) C19—C20—C21—C22 54.4 (2)
C4—C5—C10—C1 0.6 (2) C20—C21—C22—C23 −54.38 (19)
C6—C5—C10—C1 −179.01 (14) C21—C22—C23—N2 57.88 (14)
C2—C1—C10—C9 −177.59 (15) C20—C19—N2—C23 58.52 (13)
C11—C1—C10—C9 0.5 (2) C20—C19—N2—C11 179.12 (12)
C2—C1—C10—C5 1.2 (2) C22—C23—N2—C19 −58.58 (11)
C11—C1—C10—C5 179.26 (13) C22—C23—N2—C11 179.46 (11)
C2—C1—C11—N2 −30.85 (18) C12—C11—N2—C19 46.39 (14)
C10—C1—C11—N2 151.10 (12) C1—C11—N2—C19 171.07 (11)
C2—C1—C11—C12 94.46 (16) C12—C11—N2—C23 166.88 (8)
C10—C1—C11—C12 −83.59 (16) C1—C11—N2—C23 −68.46 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.99 1.70 2.614 151
C14—H14···N1i 0.93 2.55 3.395 (2) 151

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2110).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett.43, 8367–8369.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem.70, 1897–1900. [DOI] [PubMed]
  6. Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475–479.
  7. Zhao, H., Li, Y. H., Wang, X. S., Qu, Z. R., Wang, L. Z., Xiong, R. G., Abrahams, B. F. & Xue, Z. L. (2004). Chem. Eur. J.10, 2386–2390. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033728/lx2110sup1.cif

e-65-o2257-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033728/lx2110Isup2.hkl

e-65-o2257-Isup2.hkl (159.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES