Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2086. doi: 10.1107/S1600536809030219

(E)-3-Bromo-N′-(4-methoxy­benzyl­idene)benzohydrazide methanol solvate

Guo-Biao Cao a,*
PMCID: PMC2970086  PMID: 21577504

Abstract

The title compound, C15H13BrN2O2·CH3OH, was synthesized by the reaction of 4-methoxy­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The benzohydrazide mol­ecule displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 4.0 (2)°. The benzohydrazide and methanol mol­ecules are linked into a chain propagating along the b axis by O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For hydrazone compounds reported previously by our group, see: Qu et al. (2008); Yang et al. (2008); Cao & Lu (2009a ,b ); Qu & Cao (2009); Cao & Wang (2009); Cao (2009). graphic file with name e-65-o2086-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O2·CH4O

  • M r = 365.23

  • Monoclinic, Inline graphic

  • a = 13.585 (1) Å

  • b = 6.715 (1) Å

  • c = 18.377 (1) Å

  • β = 104.429 (2)°

  • V = 1623.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.630, T max = 0.672

  • 9539 measured reflections

  • 3539 independent reflections

  • 2132 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.103

  • S = 1.02

  • 3539 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030219/ci2872sup1.cif

e-65-o2086-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030219/ci2872Isup2.hkl

e-65-o2086-Isup2.hkl (173.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 2.07 2.831 (3) 154
O3—H3⋯N2 0.82 2.60 3.211 (3) 132
N1—H1⋯O3i 0.90 (1) 2.12 (1) 2.993 (3) 166 (3)
C6—H6⋯O3i 0.93 2.49 3.406 (4) 168
C8—H8⋯O3i 0.93 2.56 3.370 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The Vital Foundation of Ankang University (project No. 2008AKXY012) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02 J K202) are gratefully acknowledged.

supplementary crystallographic information

Comment

Study on the crystal structures of hydrazone derivatives is an interesting topic in structural chemistry. Recently, crystal structures of a number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b; Qu & Cao, 2009; Cao & Wang, 2009), the title new hydrazone compound derived from the reaction of 2-chlorobenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide is reported.

The title compound (Fig. 1) consists of a hydrazone molecule and a methanol molecule of crystallization. The methanol molecule is linked to the hydrazone molecule through O—H···O and O—H···N hydrogen bonds (Table 1). The hydrazone molecule displays an E configuration about the C═N bond. The dihedral angle between the two benzene rings is 4.0 (2)°. In the crystal structure, molecules are linked through intermolecular N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) to form chains running along the b axis (Fig. 2).

Experimental

The title compound was prepared by refluxing equimolar quantities of 4-methoxybenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed by slow evaporation of the solution in air.

Refinement

Atom H1 was located in a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with a O-H distance of 0.82 Å, C-H distances of 0.93-0.96 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.

Crystal data

C15H13BrN2O2·CH4O F(000) = 744
Mr = 365.23 Dx = 1.494 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2168 reflections
a = 13.585 (1) Å θ = 2.7–24.6°
b = 6.715 (1) Å µ = 2.55 mm1
c = 18.377 (1) Å T = 298 K
β = 104.429 (2)° Block, colourless
V = 1623.5 (3) Å3 0.20 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3539 independent reflections
Radiation source: fine-focus sealed tube 2132 reflections with I > 2σ(I)
graphite Rint = 0.030
ω scans θmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −17→17
Tmin = 0.630, Tmax = 0.672 k = −8→8
9539 measured reflections l = −23→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.043P)2 + 0.516P] where P = (Fo2 + 2Fc2)/3
3539 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.41 e Å3
1 restraint Δρmin = −0.52 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.53424 (3) 0.09750 (6) −0.18341 (2) 0.09185 (19)
O1 0.26855 (15) 0.2642 (3) −0.02385 (11) 0.0608 (5)
O2 −0.19847 (15) 0.3318 (3) 0.21672 (11) 0.0595 (5)
O3 0.20352 (18) 0.5573 (3) 0.06465 (12) 0.0676 (6)
H3 0.2041 0.4585 0.0385 0.101*
N1 0.21308 (16) −0.0152 (3) 0.02088 (12) 0.0460 (5)
N2 0.14486 (16) 0.0932 (3) 0.04946 (12) 0.0477 (5)
C1 0.34289 (18) −0.0397 (4) −0.04807 (14) 0.0410 (6)
C2 0.3955 (2) 0.0578 (4) −0.09241 (14) 0.0470 (6)
H2 0.3858 0.1937 −0.1011 0.056*
C3 0.4622 (2) −0.0442 (4) −0.12395 (15) 0.0504 (7)
C4 0.4778 (2) −0.2432 (4) −0.11248 (16) 0.0573 (8)
H4 0.5230 −0.3111 −0.1341 0.069*
C5 0.4257 (2) −0.3414 (4) −0.06842 (17) 0.0560 (7)
H5 0.4360 −0.4773 −0.0602 0.067*
C6 0.3584 (2) −0.2429 (4) −0.03613 (15) 0.0488 (7)
H6 0.3236 −0.3120 −0.0065 0.059*
C7 0.27195 (19) 0.0826 (4) −0.01586 (14) 0.0446 (6)
C8 0.0896 (2) −0.0058 (4) 0.08234 (15) 0.0485 (6)
H8 0.0978 −0.1432 0.0862 0.058*
C9 0.01344 (18) 0.0883 (4) 0.11444 (14) 0.0430 (6)
C10 −0.0341 (2) −0.0209 (4) 0.15986 (15) 0.0488 (7)
H10 −0.0179 −0.1549 0.1683 0.059*
C11 −0.1040 (2) 0.0628 (4) 0.19264 (15) 0.0519 (7)
H11 −0.1342 −0.0137 0.2232 0.062*
C12 −0.12967 (19) 0.2614 (4) 0.18031 (14) 0.0451 (6)
C13 −0.0856 (2) 0.3731 (4) 0.13385 (15) 0.0474 (6)
H13 −0.1038 0.5058 0.1242 0.057*
C14 −0.0142 (2) 0.2866 (4) 0.10182 (15) 0.0474 (6)
H14 0.0159 0.3630 0.0711 0.057*
C15 −0.2213 (2) 0.5384 (4) 0.21096 (18) 0.0662 (9)
H15A −0.1611 0.6134 0.2330 0.099*
H15B −0.2728 0.5674 0.2370 0.099*
H15C −0.2455 0.5742 0.1590 0.099*
C16 0.2481 (3) 0.5111 (5) 0.13973 (19) 0.0749 (9)
H16A 0.3160 0.4636 0.1445 0.112*
H16B 0.2088 0.4098 0.1563 0.112*
H16C 0.2500 0.6283 0.1700 0.112*
H1 0.210 (2) −0.1474 (16) 0.0258 (17) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1033 (3) 0.0942 (3) 0.0980 (3) −0.0125 (2) 0.0627 (2) 0.0055 (2)
O1 0.0810 (14) 0.0302 (11) 0.0831 (14) 0.0074 (9) 0.0428 (11) 0.0037 (9)
O2 0.0673 (12) 0.0512 (11) 0.0699 (13) 0.0065 (9) 0.0358 (10) 0.0029 (10)
O3 0.1030 (16) 0.0346 (11) 0.0763 (15) 0.0028 (11) 0.0434 (13) −0.0005 (10)
N1 0.0513 (13) 0.0327 (11) 0.0584 (14) 0.0025 (10) 0.0218 (11) −0.0012 (11)
N2 0.0514 (13) 0.0417 (12) 0.0538 (14) 0.0046 (10) 0.0202 (11) −0.0054 (11)
C1 0.0431 (14) 0.0351 (14) 0.0431 (15) 0.0001 (11) 0.0075 (12) −0.0043 (11)
C2 0.0519 (16) 0.0369 (14) 0.0515 (16) −0.0012 (12) 0.0112 (13) 0.0010 (12)
C3 0.0512 (16) 0.0540 (18) 0.0481 (16) −0.0026 (13) 0.0163 (13) −0.0029 (13)
C4 0.0560 (18) 0.0532 (18) 0.0635 (19) 0.0122 (14) 0.0167 (15) −0.0099 (15)
C5 0.0638 (19) 0.0358 (15) 0.0686 (19) 0.0104 (13) 0.0172 (16) −0.0023 (14)
C6 0.0544 (17) 0.0328 (14) 0.0599 (17) 0.0010 (12) 0.0153 (14) 0.0017 (12)
C7 0.0483 (15) 0.0376 (16) 0.0471 (15) 0.0051 (12) 0.0105 (12) −0.0003 (12)
C8 0.0520 (17) 0.0381 (14) 0.0564 (17) 0.0032 (13) 0.0153 (14) −0.0028 (13)
C9 0.0411 (14) 0.0406 (15) 0.0453 (15) −0.0004 (12) 0.0071 (12) −0.0041 (12)
C10 0.0567 (17) 0.0361 (14) 0.0548 (16) 0.0020 (12) 0.0161 (14) 0.0028 (13)
C11 0.0606 (18) 0.0443 (16) 0.0555 (17) −0.0027 (13) 0.0231 (14) 0.0082 (13)
C12 0.0454 (15) 0.0463 (16) 0.0459 (15) −0.0012 (12) 0.0158 (12) −0.0027 (12)
C13 0.0538 (16) 0.0339 (14) 0.0559 (17) 0.0038 (12) 0.0165 (13) 0.0013 (12)
C14 0.0537 (16) 0.0397 (15) 0.0520 (16) −0.0033 (12) 0.0189 (13) 0.0029 (13)
C15 0.073 (2) 0.059 (2) 0.073 (2) 0.0194 (16) 0.0303 (17) −0.0001 (16)
C16 0.086 (2) 0.064 (2) 0.078 (3) −0.0032 (18) 0.028 (2) −0.0082 (19)

Geometric parameters (Å, °)

Br1—C3 1.895 (3) C6—H6 0.93
O1—C7 1.227 (3) C8—C9 1.456 (3)
O2—C12 1.363 (3) C8—H8 0.93
O2—C15 1.420 (3) C9—C10 1.385 (4)
O3—C16 1.396 (4) C9—C14 1.387 (3)
O3—H3 0.82 C10—C11 1.366 (4)
N1—C7 1.340 (3) C10—H10 0.93
N1—N2 1.381 (3) C11—C12 1.382 (4)
N1—H1 0.895 (10) C11—H11 0.93
N2—C8 1.264 (3) C12—C13 1.380 (3)
C1—C2 1.376 (3) C13—C14 1.381 (3)
C1—C6 1.390 (4) C13—H13 0.93
C1—C7 1.496 (3) C14—H14 0.93
C2—C3 1.374 (3) C15—H15A 0.96
C2—H2 0.93 C15—H15B 0.96
C3—C4 1.361 (4) C15—H15C 0.96
C4—C5 1.370 (4) C16—H16A 0.96
C4—H4 0.93 C16—H16B 0.96
C5—C6 1.376 (4) C16—H16C 0.96
C5—H5 0.93
C12—O2—C15 117.8 (2) C10—C9—C14 117.5 (2)
C16—O3—H3 109.5 C10—C9—C8 119.9 (2)
C7—N1—N2 118.3 (2) C14—C9—C8 122.6 (2)
C7—N1—H1 126 (2) C11—C10—C9 121.8 (2)
N2—N1—H1 115 (2) C11—C10—H10 119.1
C8—N2—N1 116.1 (2) C9—C10—H10 119.1
C2—C1—C6 118.7 (2) C10—C11—C12 120.0 (2)
C2—C1—C7 117.0 (2) C10—C11—H11 120.0
C6—C1—C7 124.4 (2) C12—C11—H11 120.0
C3—C2—C1 120.4 (2) O2—C12—C13 124.9 (2)
C3—C2—H2 119.8 O2—C12—C11 115.5 (2)
C1—C2—H2 119.8 C13—C12—C11 119.6 (2)
C4—C3—C2 121.2 (2) C12—C13—C14 119.6 (2)
C4—C3—Br1 119.9 (2) C12—C13—H13 120.2
C2—C3—Br1 118.9 (2) C14—C13—H13 120.2
C3—C4—C5 118.7 (2) C13—C14—C9 121.5 (2)
C3—C4—H4 120.7 C13—C14—H14 119.3
C5—C4—H4 120.7 C9—C14—H14 119.3
C4—C5—C6 121.3 (3) O2—C15—H15A 109.5
C4—C5—H5 119.3 O2—C15—H15B 109.5
C6—C5—H5 119.3 H15A—C15—H15B 109.5
C5—C6—C1 119.6 (3) O2—C15—H15C 109.5
C5—C6—H6 120.2 H15A—C15—H15C 109.5
C1—C6—H6 120.2 H15B—C15—H15C 109.5
O1—C7—N1 122.5 (2) O3—C16—H16A 109.5
O1—C7—C1 120.5 (2) O3—C16—H16B 109.5
N1—C7—C1 117.0 (2) H16A—C16—H16B 109.5
N2—C8—C9 122.1 (2) O3—C16—H16C 109.5
N2—C8—H8 118.9 H16A—C16—H16C 109.5
C9—C8—H8 118.9 H16B—C16—H16C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O1 0.82 2.07 2.831 (3) 154
O3—H3···N2 0.82 2.60 3.211 (3) 132
N1—H1···O3i 0.90 (1) 2.12 (1) 2.993 (3) 166 (3)
C6—H6···O3i 0.93 2.49 3.406 (4) 168
C8—H8···O3i 0.93 2.56 3.370 (3) 146

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2872).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cao, G.-B. (2009). Acta Cryst. E65, o2085. [DOI] [PMC free article] [PubMed]
  4. Cao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587. [DOI] [PMC free article] [PubMed]
  5. Cao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600. [DOI] [PMC free article] [PubMed]
  6. Cao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  8. Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. [DOI] [PMC free article] [PubMed]
  9. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  10. Qu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705. [DOI] [PMC free article] [PubMed]
  11. Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Yang, D.-S. (2007). J. Chem. Crystallogr.37, 343–348.
  14. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]
  15. You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem.82, 2215–2219.
  16. Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030219/ci2872sup1.cif

e-65-o2086-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030219/ci2872Isup2.hkl

e-65-o2086-Isup2.hkl (173.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES