Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):m1023–m1024. doi: 10.1107/S1600536809029195

Bis[2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine]manganese(II) bis­(per­chlorate) acetonitrile solvate

Shao-Ming Shang a, Chun-Xia Ren b, Xin Wang a,*, Lu-De Lu a, Xu-Jie Yang a
PMCID: PMC2970088  PMID: 21577391

Abstract

In the cation of the title compound, [Mn(C11H13N5)2](ClO4)2·CH3CN, the metal atom is located on a twofold rotation axis and is six-coordinated by six N atoms from two different 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) ligands in a distorted octahedral geometry. The O atoms of the perchlorate anions are disordered with occupancies in the ratio 0.593 (10):0.407 (10). In the crystal, mol­ecules are stabilized by two N—H⋯O hydrogen bonds, forming zigzag chains along the a axis, which are further inter­connected by N—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distance = 3.50 (1) Å] into a three-dimensional network.

Related literature

For the network topologies and potential applications of supra­molecular architectures, see: Yaghi et al. (1998); Hagrman et al. (1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry, see: Bordo et al. (2001). Our studies of such complexes involving an imidazole ligand indicate that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism, see: Ren et al. (2007, 2009); Ren, Ye, He et al. (2004); Ren, Ye, Zhu et al. (2004). For metal–imidazole bond lengths, see: Stupka et al. (2004); Hammes et al. (2005); Haga et al. (1996); Böca et al. (2005). For metal–imidazole bond lengths, see: Ren et al. (2009). For the synthesis of 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine, see: Baker et al. (1991). graphic file with name e-65-m1023-scheme1.jpg

Experimental

Crystal data

  • [Mn(C11H13N5)2](ClO4)2·C2H3N

  • M r = 725.42

  • Monoclinic, Inline graphic

  • a = 20.521 (5) Å

  • b = 12.732 (5) Å

  • c = 14.602 (6) Å

  • β = 123.893 (10)°

  • V = 3167.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 273 K

  • 0.28 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.837, T max = 0.912

  • 7799 measured reflections

  • 2821 independent reflections

  • 1277 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.121

  • S = 0.79

  • 2821 reflections

  • 246 parameters

  • 94 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029195/tk2501sup1.cif

e-65-m1023-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029195/tk2501Isup2.hkl

e-65-m1023-Isup2.hkl (138.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—N4 2.247 (3)
Mn1—N2 2.283 (3)
Mn1—N1 2.287 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O2ii 0.86 2.50 3.237 (12) 144
N5—H5A⋯O3ii 0.86 2.25 2.942 (12) 137
N5—H5A⋯O2′ii 0.86 2.11 2.965 (8) 176
N3—H3A⋯O4iii 0.86 2.52 3.26 (2) 144
N3—H3A⋯O3′iii 0.86 2.16 3.015 (8) 178

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).

supplementary crystallographic information

Comment

The construction supramolecular architectures is currently of great interest owing to their intriguing network topologies and potential functions such as adsorption, ion exchange, shape-selective catalysis, non-linear and magnetic materials (Yaghi et al., 1998; Hagrman et al., 1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry (Bordo, et al., 2001). We described previously a number of such metal complexes, including imidazole ligand, and have concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007, 2009). We report here the preparation and crystal structure of a mononuclear coordination complex, [Mn(bip)2](ClO4)2.CH3CN (I) (bip is 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine).

The crystal structure of (I) crystallizes in the monoclinic space group C2/c. As shown in Fig. 1, the title compound consists of a [Mn(bip)2]2+ cation, two perchlorate counter ions and one Acetonitride molecular. The manganese(II) atom in the cation is in a distorted tetrahedral geometry, being coordinated with six nitrogen atoms from two neutral tridentate ligands bip. The Mn(1)—N bond lengths of The equatorial 2.292 (4), 2.284 (4), 2.251 (4) Å, which are slightly shorter than the metal-imidazole (Stupka, et al., 2004; Hammes et al., 2005; Haga et al., 1996; Böca et al., 2005) and longer than the metal-imidazole (Ren, et al., 2009). The N—Mn(1)—N bond angle is in the range of 70.17 (15)–147.1 (2) /%. Two bip ligands of adjacent molecules are parallel to each other with a distance of 3.50 Å, showing the presence of π-π interaction. The molecules further interconnected into three-dimensional network through hydrogen bond between the oxygen atom of perchlorate counter-ion and the uncoordination nitrogen atoms of bip ligands.

Experimental

All the reagents and solvents employed were commercially available and used as received without further purification. The ligand 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) was synthesized by literature methods (Baker et al., 1991).

A solution of MnCl24H2O (0.2 mmol, 40 mg) and NaClO4 (0.4 mmol, 50 mg) in acetonitrile (10 ml), was added dropwise to a stirred solution of bip (0.4 mmol, 86 mg) in methanol(10 ml) at 60 K. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the clear filtrate for two days in 60% yield. Elemental analysis, Found: C, 39.68; H, 3.93; N, 21.15%. Calc. for C24H29Cl2MnN11O8: C, 39.70; H, 4.00; N, 21.23%. Main IR bands (KBr, cm-1): 3370m, 3204 s, 2938m, 2887m, 1595m, 1567 s, 1531 s, 1453 s, 1283 s, 1209w, 1144 s,1116 s, 1089 s, 1028w, 1010m, 953w, 830w, 752w, 663w, 636m, 628m.

Refinement

The H atom attached to N(2) atom was refined isotropically. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H and C—H distances of 0.90 Å and 0.96 Å, respectively, and Uiso(H) = 1.2 times of those of their parent atoms (Å2). The O atoms are resolved into two positions by PART instructions. The occupancy for the unprimed O atoms is set at 21 and that of the primed atoms at -21. The clorine-oxygen distances were restrained to 1.44 Å (and the oxygen-oxygen interaction to 2.35 Å). Additionally, the vibration of the oxygen atoms were made isotropic by an ISOR restraint. The O atoms are resolved into two positions and give the site occupany of the major component.

Figures

Fig. 1.

Fig. 1.

The structure of the complex [Mn(bip)2]2+ showing 30% probability displacement ellipsoids and H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The framework of [Mn(bip)2](ClO4)2CH3CN viewed along the c axis. H atoms have been omitted for clarity.

Crystal data

[Mn(C11H13N5)2](ClO4)2·C2H3N F(000) = 1492
Mr = 725.42 Dx = 1.521 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 20.521 (5) Å Cell parameters from 668 reflections
b = 12.732 (5) Å θ = 2.0–25.1°
c = 14.602 (6) Å µ = 0.65 mm1
β = 123.893 (10)° T = 273 K
V = 3167.0 (19) Å3 Block, yellow
Z = 4 0.28 × 0.21 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2821 independent reflections
Radiation source: fine-focus sealed tube 1277 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −22→24
Tmin = 0.837, Tmax = 0.912 k = −11→15
7799 measured reflections l = −16→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0647P)2] where P = (Fo2 + 2Fc2)/3
2821 reflections (Δ/σ)max = 0.001
246 parameters Δρmax = 0.33 e Å3
94 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.5000 0.94417 (7) 0.7500 0.0488 (3)
N1 0.51856 (17) 0.8931 (3) 0.9132 (2) 0.0468 (8)
N2 0.59227 (18) 1.0487 (2) 0.8898 (2) 0.0539 (8)
N3 0.6779 (2) 1.0731 (3) 1.0725 (3) 0.0708 (10)
H3A 0.6979 1.0635 1.1416 0.085*
N4 0.40797 (17) 0.8262 (2) 0.7177 (2) 0.0524 (8)
N5 0.3602 (2) 0.7083 (3) 0.7785 (3) 0.0833 (12)
H5A 0.3581 0.6730 0.8271 0.100*
C1 0.6436 (2) 1.1375 (4) 0.9029 (3) 0.0746 (13)
H1A 0.6130 1.2013 0.8721 0.090*
H1B 0.6693 1.1225 0.8652 0.090*
C2 0.7041 (3) 1.1503 (4) 1.0259 (3) 0.0785 (14)
H2A 0.7566 1.1347 1.0453 0.094*
H2B 0.7032 1.2208 1.0504 0.094*
C3 0.6168 (2) 1.0191 (3) 0.9886 (3) 0.0509 (10)
C4 0.5788 (2) 0.9317 (3) 1.0073 (3) 0.0450 (9)
C5 0.6011 (2) 0.8891 (3) 1.1076 (3) 0.0630 (12)
H5 0.6430 0.9169 1.1733 0.076*
C6 0.5594 (3) 0.8037 (4) 1.1076 (3) 0.0757 (14)
H6 0.5736 0.7730 1.1741 0.091*
C7 0.4970 (2) 0.7637 (4) 1.0097 (3) 0.0678 (13)
H7 0.4689 0.7062 1.0090 0.081*
C8 0.4778 (2) 0.8114 (3) 0.9136 (3) 0.0506 (10)
C9 0.4140 (2) 0.7806 (3) 0.8007 (3) 0.0525 (11)
C10 0.3053 (3) 0.6981 (4) 0.6593 (3) 0.0818 (14)
H10A 0.2523 0.7166 0.6361 0.098*
H10B 0.3054 0.6279 0.6335 0.098*
N6 0.5000 0.3462 (7) 0.7500 0.186 (4)
C12 0.5000 0.5403 (7) 0.7500 0.178 (5)
H12B 0.5294 0.5712 0.7238 0.214* 0.50
H12A 0.5189 0.5583 0.8247 0.214* 0.50
H12C 0.4453 0.5583 0.7073 0.214* 0.50
C13 0.5000 0.4339 (7) 0.7500 0.116 (3)
C11 0.3378 (2) 0.7797 (3) 0.6178 (3) 0.0664 (12)
H11A 0.3520 0.7454 0.5720 0.080*
H11B 0.2991 0.8334 0.5742 0.080*
Cl1 0.32690 (9) 0.52285 (13) 0.39585 (12) 0.1026 (5)
O1 0.3119 (7) 0.5391 (11) 0.4824 (8) 0.147 (6) 0.407 (10)
O2 0.4047 (4) 0.4898 (11) 0.4424 (8) 0.152 (7) 0.407 (10)
O3 0.2745 (6) 0.4409 (11) 0.3284 (13) 0.209 (9) 0.407 (10)
O4 0.3090 (11) 0.6156 (10) 0.3332 (15) 0.264 (11) 0.407 (10)
O1' 0.3558 (5) 0.6031 (6) 0.4718 (7) 0.151 (5) 0.593 (10)
O2' 0.3455 (6) 0.4194 (5) 0.4361 (7) 0.139 (5) 0.593 (10)
O3' 0.2464 (3) 0.5354 (7) 0.3137 (5) 0.139 (4) 0.593 (10)
O4' 0.3628 (7) 0.5401 (8) 0.3310 (10) 0.217 (7) 0.593 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0517 (6) 0.0556 (6) 0.0338 (5) 0.000 0.0205 (4) 0.000
N1 0.047 (2) 0.054 (2) 0.0324 (18) −0.0002 (17) 0.0180 (17) −0.0028 (15)
N2 0.059 (2) 0.058 (2) 0.0378 (19) −0.0088 (18) 0.0229 (16) 0.0011 (16)
N3 0.074 (2) 0.084 (3) 0.0357 (19) −0.030 (2) 0.0196 (19) −0.0089 (19)
N4 0.051 (2) 0.059 (2) 0.0362 (18) −0.0072 (17) 0.0177 (17) −0.0039 (16)
N5 0.091 (3) 0.093 (3) 0.046 (2) −0.046 (3) 0.027 (2) −0.007 (2)
C1 0.088 (3) 0.072 (3) 0.054 (3) −0.023 (3) 0.034 (3) −0.004 (2)
C2 0.081 (3) 0.091 (4) 0.053 (3) −0.030 (3) 0.032 (3) −0.009 (2)
C3 0.049 (3) 0.055 (3) 0.042 (2) −0.002 (2) 0.022 (2) −0.004 (2)
C4 0.047 (2) 0.051 (3) 0.034 (2) 0.000 (2) 0.020 (2) −0.002 (2)
C5 0.065 (3) 0.076 (3) 0.035 (2) −0.010 (3) 0.019 (2) −0.003 (2)
C6 0.093 (4) 0.089 (4) 0.039 (3) −0.014 (3) 0.033 (3) 0.008 (2)
C7 0.080 (3) 0.076 (3) 0.040 (3) −0.022 (3) 0.029 (2) −0.001 (2)
C8 0.047 (2) 0.056 (3) 0.043 (2) −0.005 (2) 0.021 (2) −0.003 (2)
C9 0.054 (3) 0.055 (3) 0.040 (2) −0.008 (2) 0.021 (2) −0.003 (2)
C10 0.081 (3) 0.087 (4) 0.058 (3) −0.034 (3) 0.027 (3) −0.015 (3)
N6 0.304 (12) 0.120 (8) 0.196 (9) 0.000 0.179 (9) 0.000
C12 0.163 (10) 0.098 (8) 0.154 (9) 0.000 0.013 (7) 0.000
C13 0.153 (8) 0.094 (8) 0.124 (7) 0.000 0.091 (6) 0.000
C11 0.062 (3) 0.073 (3) 0.044 (2) −0.018 (2) 0.017 (2) −0.010 (2)
Cl1 0.0956 (11) 0.0967 (12) 0.0876 (10) 0.0154 (9) 0.0339 (9) −0.0296 (9)
O1 0.165 (12) 0.155 (13) 0.094 (7) 0.048 (10) 0.056 (8) −0.039 (7)
O2 0.077 (6) 0.243 (16) 0.111 (10) 0.016 (7) 0.038 (6) −0.023 (10)
O3 0.105 (9) 0.242 (16) 0.247 (18) −0.054 (11) 0.079 (11) −0.189 (15)
O4 0.31 (3) 0.224 (15) 0.27 (2) 0.084 (15) 0.17 (2) 0.105 (15)
O1' 0.134 (7) 0.129 (7) 0.109 (6) 0.003 (5) 0.017 (5) −0.077 (6)
O2' 0.211 (13) 0.103 (5) 0.137 (7) 0.059 (7) 0.118 (8) 0.025 (5)
O3' 0.110 (5) 0.159 (9) 0.065 (4) −0.011 (5) −0.004 (4) −0.018 (4)
O4' 0.320 (15) 0.167 (10) 0.300 (16) −0.050 (10) 0.256 (16) −0.056 (9)

Geometric parameters (Å, °)

Mn1—N4 2.247 (3) C5—C6 1.384 (5)
Mn1—N4i 2.247 (3) C5—H5 0.9300
Mn1—N2 2.283 (3) C6—C7 1.378 (5)
Mn1—N2i 2.283 (3) C6—H6 0.9300
Mn1—N1 2.287 (3) C7—C8 1.370 (5)
Mn1—N1i 2.287 (3) C7—H7 0.9300
N1—C4 1.328 (4) C8—C9 1.476 (5)
N1—C8 1.337 (4) C10—C11 1.530 (5)
N2—C3 1.292 (4) C10—H10A 0.9700
N2—C1 1.484 (5) C10—H10B 0.9700
N3—C3 1.354 (5) N6—C13 1.117 (10)
N3—C2 1.458 (5) C12—C13 1.3547
N3—H3A 0.8600 C12—H12B 0.9600
N4—C9 1.287 (4) C12—H12A 0.9600
N4—C11 1.486 (4) C12—H12C 0.9600
N5—C9 1.332 (4) C11—H11A 0.9700
N5—C10 1.459 (5) C11—H11B 0.9700
N5—H5A 0.8600 Cl1—O1' 1.376 (5)
C1—C2 1.519 (5) Cl1—O2' 1.406 (5)
C1—H1A 0.9700 Cl1—O2 1.407 (6)
C1—H1B 0.9700 Cl1—O3' 1.409 (5)
C2—H2A 0.9700 Cl1—O4 1.411 (7)
C2—H2B 0.9700 Cl1—O3 1.426 (7)
C3—C4 1.468 (5) Cl1—O1 1.474 (7)
C4—C5 1.379 (5) Cl1—O4' 1.505 (6)
N4—Mn1—N4i 96.14 (16) C8—C7—H7 121.0
N4—Mn1—N2 139.28 (11) C6—C7—H7 121.0
N4i—Mn1—N2 91.20 (11) N1—C8—C7 121.8 (4)
N4—Mn1—N2i 91.20 (11) N1—C8—C9 111.6 (3)
N4i—Mn1—N2i 139.28 (11) C7—C8—C9 126.6 (4)
N2—Mn1—N2i 108.70 (16) N4—C9—N5 116.9 (3)
N4—Mn1—N1 70.18 (11) N4—C9—C8 119.4 (4)
N4i—Mn1—N1 87.66 (10) N5—C9—C8 123.7 (4)
N2—Mn1—N1 70.18 (12) N5—C10—C11 101.3 (3)
N2i—Mn1—N1 132.10 (10) N5—C10—H10A 111.3
N4—Mn1—N1i 87.66 (10) C11—C10—H10A 110.3
N4i—Mn1—N1i 70.18 (11) N5—C10—H10B 112.2
N2—Mn1—N1i 132.10 (11) C11—C10—H10B 112.1
N2i—Mn1—N1i 70.18 (11) H10A—C10—H10B 109.4
N1—Mn1—N1i 146.97 (17) C13—C12—H12B 114.2
C4—N1—C8 120.4 (3) C13—C12—H12A 103.9
C4—N1—Mn1 119.4 (2) H12B—C12—H12A 114.2
C8—N1—Mn1 119.0 (2) C13—C12—H12C 103.9
C3—N2—C1 105.8 (3) H12B—C12—H12C 114.2
C3—N2—Mn1 116.2 (3) H12A—C12—H12C 105.4
C1—N2—Mn1 137.3 (2) N6—C13—C12 180.000 (6)
C3—N3—C2 108.5 (3) N4—C11—C10 106.3 (3)
C3—N3—H3A 125.7 N4—C11—H11A 110.9
C2—N3—H3A 125.7 C10—C11—H11A 109.5
C9—N4—C11 106.0 (3) N4—C11—H11B 110.7
C9—N4—Mn1 118.4 (3) C10—C11—H11B 111.2
C11—N4—Mn1 135.5 (2) H11A—C11—H11B 108.3
C9—N5—C10 109.6 (3) O1'—Cl1—O2' 117.7 (5)
C9—N5—H5A 125.2 O1'—Cl1—O2 88.3 (5)
C10—N5—H5A 125.2 O2'—Cl1—O2 63.0 (5)
N2—C1—C2 106.7 (3) O1'—Cl1—O3' 112.1 (4)
N2—C1—H1A 110.4 O2'—Cl1—O3' 112.2 (5)
C2—C1—H1A 110.4 O2—Cl1—O3' 157.2 (5)
N2—C1—H1B 110.4 O1'—Cl1—O4 74.9 (8)
C2—C1—H1B 110.4 O2'—Cl1—O4 165.2 (8)
H1A—C1—H1B 108.6 O2—Cl1—O4 112.3 (7)
N3—C2—C1 102.0 (3) O3'—Cl1—O4 66.1 (7)
N3—C2—H2A 111.4 O1'—Cl1—O3 157.0 (5)
C1—C2—H2A 111.4 O2'—Cl1—O3 61.8 (7)
N3—C2—H2B 111.4 O2—Cl1—O3 109.3 (6)
C1—C2—H2B 111.4 O3'—Cl1—O3 54.5 (6)
H2A—C2—H2B 109.2 O4—Cl1—O3 109.9 (7)
N2—C3—N3 116.7 (4) O1'—Cl1—O1 53.6 (5)
N2—C3—C4 120.8 (3) O2'—Cl1—O1 84.9 (6)
N3—C3—C4 122.5 (3) O2—Cl1—O1 110.6 (6)
N1—C4—C5 121.3 (4) O3'—Cl1—O1 90.5 (5)
N1—C4—C3 111.9 (3) O4—Cl1—O1 109.6 (6)
C5—C4—C3 126.8 (4) O3—Cl1—O1 104.9 (6)
C4—C5—C6 118.1 (4) O1'—Cl1—O4' 104.9 (5)
C4—C5—H5 121.0 O2'—Cl1—O4' 106.6 (4)
C6—C5—H5 121.0 O2—Cl1—O4' 61.7 (5)
C7—C6—C5 120.4 (4) O3'—Cl1—O4' 101.6 (5)
C7—C6—H6 119.8 O4—Cl1—O4' 60.8 (7)
C5—C6—H6 119.8 O3—Cl1—O4' 96.7 (6)
C8—C7—C6 118.0 (4) O1—Cl1—O4' 158.3 (6)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5A···O2ii 0.86 2.50 3.237 (12) 144
N5—H5A···O3ii 0.86 2.25 2.942 (12) 137
N5—H5A···O2'ii 0.86 2.11 2.965 (8) 176
N3—H3A···O4iii 0.86 2.52 3.26 (2) 144
N3—H3A···O3'iii 0.86 2.16 3.015 (8) 178

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x+1/2, y+1/2, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2501).

References

  1. Baker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem.44, 1041–1048.
  2. Böca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun.8, 227–230.
  3. Bordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem.382, 1245–31252. [DOI] [PubMed]
  4. Bruker (1998). SMART, SAINT-Plus, and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl.35, 76–78.
  6. Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [DOI] [PubMed]
  7. Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun.8, 513–516.
  8. Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747.
  9. Ren, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572–m573. [DOI] [PMC free article] [PubMed]
  10. Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200–206.
  11. Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450.
  12. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  13. Stupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). Dalton Trans. pp. 407–412. [DOI] [PubMed]
  14. Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029195/tk2501sup1.cif

e-65-m1023-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029195/tk2501Isup2.hkl

e-65-m1023-Isup2.hkl (138.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES