Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 29;65(Pt 9):o2259. doi: 10.1107/S1600536809033522

N′-(5-Bromo-2-hydr­oxy-3-methoxy­benzyl­idene)-4-hydr­oxy-3-methoxy­benzohydrazide dihydrate

Jiu-Fu Lu a,*, Suo-Tian Min a, Hong-Guang Ge a, Xiao-Hui Ji a, Yue-Fei Bai b
PMCID: PMC2970095  PMID: 21577655

Abstract

In the title compound, C16H15BrN2O5·2H2O, the dihedral angle between the two aromatic rings is 2.9 (2)° and an intra­molecular O—H⋯N hydrogen bond is observed. One of the water mol­ecule is disordered over two positions, with occupancies of 0.83 (3) and 0.17 (3). In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular O—H⋯O, O—H⋯(O,O), O—H⋯N and N—H⋯O hydrogen bonds. π–π inter­actions involving Br-substituted benzene rings, with a centroid–centroid distance of 3.552 (3) Å are also observed.

Related literature

For related structures, see: Lu et al. (2008a ,b ,c ); Abdul Alhadi et al. (2009); Mohd Lair et al. (2009); Narayana et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o2259-scheme1.jpg

Experimental

Crystal data

  • C16H15BrN2O5·2H2O

  • M r = 431.24

  • Monoclinic, Inline graphic

  • a = 9.262 (2) Å

  • b = 8.679 (2) Å

  • c = 24.289 (5) Å

  • β = 112.42 (3)°

  • V = 1804.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.618, T max = 0.654

  • 14447 measured reflections

  • 3897 independent reflections

  • 1997 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.135

  • S = 1.02

  • 3897 reflections

  • 261 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033522/ci2888sup1.cif

e-65-o2259-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033522/ci2888Isup2.hkl

e-65-o2259-Isup2.hkl (191KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O1 0.85 (5) 2.34 (5) 2.875 (4) 122 (4)
O7—H7B⋯O2 0.85 (5) 2.22 (5) 3.027 (5) 159 (5)
O7—H7A⋯O6A 0.85 (5) 2.06 (2) 2.884 (10) 163 (6)
O6A—H6B⋯O7i 0.85 (1) 1.91 (4) 2.740 (8) 163 (5)
O6A—H6A⋯O3 0.85 (1) 1.92 (2) 2.715 (6) 154 (4)
N2—H2⋯O5ii 0.90 2.14 3.028 (4) 169
O5—H5⋯O6Biii 0.82 1.85 2.64 (3) 163
O5—H5⋯O6Aiii 0.82 1.81 2.618 (5) 166
O1—H1⋯N1 0.82 1.83 2.550 (4) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Scientific Research Foundation of Shaanxi University of Technology for financial support (project No. SLGQD0708).

supplementary crystallographic information

Comment

Schiff bases and their metal complexes have received much attention in recent years. As part of our investigation on the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b,c), we report herein the crystal structure of the title new Schiff base compound.

The title compound (Fig. 1) consists of a Schiff base molecule and two water molecules of crystallization. The bond lengths have normal values (Allen et al., 1987) and are comparable to those observed in related structures (Abdul Alhadi et al., 2009; Mohd Lair et al., 2009; Narayana et al., 2007). The dihedral angle between the two aromatic rings is 2.9 (2)°, indicating that they are approximately coplanar. An intramolecular O—H···N hydrogen bond is observed (Fig. 1).

In the crystal structure, the molecules are linked into layers parallel to the ab direction by intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

The title compound was prepared by the Schiff base condensation of 5-bromo-2-hydroxy-3-methoxybenzaldehyde (0.1 mol) and 4-hydroxy-3-methoxybenzohydrazide (0.1 mmol) in 95% ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obatined by slow evaporation of a 95% ethanol solution at room temperature.

Refinement

One of the water oxygen (O6) is disordered over two positions (O6A and O6B) with occupancies of 0.83 (3) and 0.17 (3). The Uij parameters of atoms O6B and O7 were restrained to an approximate isotropic behaviour. The H atoms of the water molecules were located in a difference map and refined with O-H and H···H distance restraints of 0.85 (1) and 1.37 (2) Å, respectively. The disordered water O atoms O6A and O6B share the same H atoms. All other H atoms were positioned geometrically (O-H = 0.82 Å and N-H = 0.90 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl, O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines. Only the major component of a disordered water molecule is shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C16H15BrN2O5·2H2O F(000) = 880
Mr = 431.24 Dx = 1.587 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1489 reflections
a = 9.262 (2) Å θ = 2.4–24.5°
b = 8.679 (2) Å µ = 2.32 mm1
c = 24.289 (5) Å T = 298 K
β = 112.42 (3)° Block, colourless
V = 1804.9 (8) Å3 0.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3897 independent reflections
Radiation source: fine-focus sealed tube 1997 reflections with I > 2σ(I)
graphite Rint = 0.074
ω scans θmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→11
Tmin = 0.618, Tmax = 0.654 k = −11→11
14447 measured reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + 0.9035P] where P = (Fo2 + 2Fc2)/3
3897 reflections (Δ/σ)max = 0.001
261 parameters Δρmax = 0.32 e Å3
20 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.61788 (6) −0.03732 (7) −0.13511 (3) 0.0778 (3)
O1 0.3146 (3) 0.3022 (4) 0.00769 (14) 0.0605 (9)
H1 0.3776 0.3517 0.0351 0.091*
O2 0.1468 (3) 0.1263 (4) −0.07827 (14) 0.0692 (10)
O3 0.4712 (3) 0.5527 (4) 0.14385 (13) 0.0601 (8)
O4 1.1183 (3) 0.7762 (3) 0.28824 (13) 0.0570 (8)
O5 0.9838 (3) 0.9110 (3) 0.35146 (13) 0.0504 (8)
H5 0.9305 0.9520 0.3676 0.076*
N1 0.5836 (4) 0.4024 (4) 0.07415 (15) 0.0448 (9)
N2 0.6775 (4) 0.4898 (4) 0.12135 (14) 0.0446 (9)
H2 0.7808 0.4791 0.1320 0.054*
C1 0.5494 (5) 0.2381 (5) −0.00796 (18) 0.0422 (10)
C2 0.3905 (5) 0.2269 (5) −0.02205 (19) 0.0450 (10)
C3 0.3019 (5) 0.1318 (5) −0.06863 (19) 0.0483 (11)
C4 0.3704 (5) 0.0548 (5) −0.10141 (19) 0.0516 (11)
H4 0.3102 −0.0075 −0.1330 0.062*
C5 0.5288 (5) 0.0694 (5) −0.08767 (19) 0.0515 (11)
C6 0.6186 (5) 0.1586 (5) −0.04129 (18) 0.0477 (11)
H6 0.7255 0.1665 −0.0319 0.057*
C7 0.6451 (5) 0.3319 (5) 0.04189 (19) 0.0476 (11)
H7 0.7516 0.3412 0.0506 0.057*
C8 0.6112 (5) 0.5611 (5) 0.15561 (18) 0.0434 (10)
C9 0.7141 (4) 0.6511 (4) 0.20645 (17) 0.0392 (10)
C10 0.8737 (5) 0.6677 (4) 0.22134 (18) 0.0421 (10)
H10 0.9213 0.6195 0.1985 0.050*
C11 0.9612 (4) 0.7545 (4) 0.26950 (18) 0.0395 (10)
C12 0.8909 (5) 0.8267 (4) 0.30448 (17) 0.0389 (10)
C13 0.7334 (5) 0.8129 (5) 0.28971 (18) 0.0468 (11)
H13 0.6856 0.8622 0.3123 0.056*
C14 0.6469 (5) 0.7260 (5) 0.24137 (19) 0.0476 (11)
H14 0.5400 0.7168 0.2316 0.057*
C15 0.0554 (6) 0.0149 (6) −0.1176 (2) 0.0779 (16)
H15A 0.0466 0.0389 −0.1573 0.117*
H15B −0.0468 0.0134 −0.1161 0.117*
H15C 0.1033 −0.0844 −0.1063 0.117*
C16 1.1985 (5) 0.7209 (6) 0.2527 (2) 0.0680 (14)
H16A 1.1888 0.6109 0.2493 0.102*
H16B 1.3069 0.7484 0.2709 0.102*
H16C 1.1539 0.7662 0.2137 0.102*
O6A 0.1601 (5) 0.5145 (11) 0.0818 (2) 0.061 (3) 0.83 (3)
H6A 0.248 (2) 0.553 (4) 0.1037 (19) 0.091*
H6B 0.108 (4) 0.591 (4) 0.0621 (18) 0.091*
O6B 0.161 (3) 0.596 (5) 0.0998 (16) 0.071 (10) 0.17 (3)
O7 −0.0002 (3) 0.2697 (5) 0.00144 (17) 0.0817 (11)
H7A 0.055 (5) 0.327 (6) 0.0300 (19) 0.123*
H7B 0.059 (5) 0.221 (6) −0.012 (2) 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0656 (4) 0.0946 (5) 0.0795 (4) 0.0048 (3) 0.0346 (3) −0.0224 (3)
O1 0.0426 (18) 0.072 (2) 0.063 (2) −0.0067 (16) 0.0166 (16) −0.0216 (17)
O2 0.0376 (18) 0.089 (2) 0.078 (2) −0.0146 (18) 0.0190 (17) −0.030 (2)
O3 0.0332 (17) 0.078 (2) 0.064 (2) −0.0127 (16) 0.0128 (15) −0.0105 (17)
O4 0.0299 (16) 0.070 (2) 0.069 (2) −0.0099 (15) 0.0168 (15) −0.0251 (16)
O5 0.0427 (17) 0.058 (2) 0.0527 (19) −0.0048 (15) 0.0208 (15) −0.0106 (15)
N1 0.038 (2) 0.045 (2) 0.042 (2) −0.0051 (17) 0.0047 (17) 0.0042 (17)
N2 0.0273 (17) 0.053 (2) 0.045 (2) −0.0014 (16) 0.0042 (16) −0.0033 (17)
C1 0.037 (2) 0.042 (3) 0.044 (3) 0.002 (2) 0.011 (2) 0.003 (2)
C2 0.045 (3) 0.042 (3) 0.049 (3) 0.002 (2) 0.019 (2) 0.000 (2)
C3 0.037 (2) 0.049 (3) 0.056 (3) −0.002 (2) 0.015 (2) −0.006 (2)
C4 0.051 (3) 0.048 (3) 0.050 (3) −0.003 (2) 0.013 (2) −0.008 (2)
C5 0.051 (3) 0.050 (3) 0.049 (3) 0.002 (2) 0.014 (2) 0.000 (2)
C6 0.037 (2) 0.058 (3) 0.047 (3) 0.001 (2) 0.015 (2) 0.005 (2)
C7 0.036 (2) 0.052 (3) 0.048 (3) −0.001 (2) 0.009 (2) 0.007 (2)
C8 0.034 (2) 0.049 (3) 0.041 (2) −0.003 (2) 0.007 (2) 0.010 (2)
C9 0.032 (2) 0.041 (2) 0.041 (2) −0.0017 (18) 0.0101 (19) 0.0039 (19)
C10 0.041 (2) 0.039 (3) 0.046 (3) 0.0000 (19) 0.017 (2) −0.003 (2)
C11 0.032 (2) 0.038 (2) 0.049 (3) −0.0019 (19) 0.016 (2) −0.001 (2)
C12 0.037 (2) 0.039 (2) 0.038 (2) −0.0026 (19) 0.011 (2) 0.0047 (19)
C13 0.038 (2) 0.056 (3) 0.049 (3) −0.004 (2) 0.019 (2) −0.004 (2)
C14 0.032 (2) 0.055 (3) 0.057 (3) −0.002 (2) 0.018 (2) 0.005 (2)
C15 0.049 (3) 0.082 (4) 0.092 (4) −0.018 (3) 0.016 (3) −0.016 (3)
C16 0.040 (3) 0.087 (4) 0.084 (4) 0.003 (3) 0.031 (3) −0.023 (3)
O6A 0.037 (3) 0.081 (5) 0.056 (3) −0.009 (2) 0.010 (2) 0.009 (3)
O6B 0.062 (12) 0.077 (14) 0.074 (13) 0.001 (8) 0.025 (9) 0.026 (8)
O7 0.048 (2) 0.112 (3) 0.083 (3) 0.000 (2) 0.0222 (18) −0.002 (2)

Geometric parameters (Å, °)

Br1—C5 1.895 (4) C8—C9 1.465 (5)
O1—C2 1.353 (5) C9—C10 1.389 (5)
O1—H1 0.82 C9—C14 1.390 (5)
O2—C3 1.365 (5) C10—C11 1.367 (5)
O2—C15 1.396 (5) C10—H10 0.93
O3—C8 1.218 (5) C11—C12 1.400 (5)
O4—C11 1.361 (4) C12—C13 1.368 (5)
O4—C16 1.421 (5) C13—C14 1.368 (6)
O5—C12 1.353 (4) C13—H13 0.93
O5—H5 0.82 C14—H14 0.93
N1—C7 1.286 (5) C15—H15A 0.96
N1—N2 1.373 (4) C15—H15B 0.96
N2—C8 1.357 (5) C15—H15C 0.96
N2—H2 0.90 C16—H16A 0.96
C1—C2 1.382 (5) C16—H16B 0.96
C1—C6 1.392 (5) C16—H16C 0.96
C1—C7 1.448 (6) O6A—O6B 0.83 (4)
C2—C3 1.388 (6) O6A—H6A 0.851 (10)
C3—C4 1.367 (6) O6A—H6B 0.853 (10)
C4—C5 1.381 (6) O6B—H6A 0.856 (10)
C4—H4 0.93 O6B—H6B 0.858 (10)
C5—C6 1.358 (6) O7—H7A 0.85 (5)
C6—H6 0.93 O7—H7B 0.85 (5)
C7—H7 0.93
C2—O1—H1 109.5 C11—C10—C9 120.3 (4)
C3—O2—C15 117.8 (4) C11—C10—H10 119.8
C11—O4—C16 119.3 (3) C9—C10—H10 119.8
C12—O5—H5 109.5 O4—C11—C10 124.8 (4)
C7—N1—N2 119.0 (3) O4—C11—C12 114.8 (3)
C8—N2—N1 118.3 (3) C10—C11—C12 120.3 (4)
C8—N2—H2 123.6 O5—C12—C13 122.7 (4)
N1—N2—H2 116.8 O5—C12—C11 117.4 (3)
C2—C1—C6 120.3 (4) C13—C12—C11 119.9 (4)
C2—C1—C7 120.1 (4) C14—C13—C12 119.3 (4)
C6—C1—C7 119.6 (4) C14—C13—H13 120.3
O1—C2—C1 123.7 (4) C12—C13—H13 120.3
O1—C2—C3 117.2 (4) C13—C14—C9 122.0 (4)
C1—C2—C3 119.1 (4) C13—C14—H14 119.0
O2—C3—C4 125.1 (4) C9—C14—H14 119.0
O2—C3—C2 114.6 (4) O2—C15—H15A 109.5
C4—C3—C2 120.3 (4) O2—C15—H15B 109.5
C3—C4—C5 120.0 (4) H15A—C15—H15B 109.5
C3—C4—H4 120.0 O2—C15—H15C 109.5
C5—C4—H4 120.0 H15A—C15—H15C 109.5
C6—C5—C4 120.7 (4) H15B—C15—H15C 109.5
C6—C5—Br1 120.8 (3) O4—C16—H16A 109.5
C4—C5—Br1 118.5 (3) O4—C16—H16B 109.5
C5—C6—C1 119.5 (4) H16A—C16—H16B 109.5
C5—C6—H6 120.2 O4—C16—H16C 109.5
C1—C6—H6 120.2 H16A—C16—H16C 109.5
N1—C7—C1 120.3 (4) H16B—C16—H16C 109.5
N1—C7—H7 119.8 O6B—O6A—H6A 61.2 (18)
C1—C7—H7 119.8 O6B—O6A—H6B 61.3 (17)
O3—C8—N2 121.2 (4) H6A—O6A—H6B 104 (2)
O3—C8—C9 121.5 (4) O6A—O6B—H6A 60.6 (18)
N2—C8—C9 117.3 (4) O6A—O6B—H6B 60.6 (18)
C10—C9—C14 118.2 (4) H6A—O6B—H6B 103 (2)
C10—C9—C8 124.1 (4) H7A—O7—H7B 109 (3)
C14—C9—C8 117.7 (4)
C7—N1—N2—C8 −178.8 (4) N1—N2—C8—O3 −2.5 (6)
C6—C1—C2—O1 −179.1 (4) N1—N2—C8—C9 178.8 (3)
C7—C1—C2—O1 1.3 (6) O3—C8—C9—C10 −178.6 (4)
C6—C1—C2—C3 2.0 (6) N2—C8—C9—C10 0.2 (6)
C7—C1—C2—C3 −177.6 (4) O3—C8—C9—C14 0.5 (6)
C15—O2—C3—C4 11.5 (7) N2—C8—C9—C14 179.2 (3)
C15—O2—C3—C2 −169.8 (4) C14—C9—C10—C11 0.6 (6)
O1—C2—C3—O2 −0.2 (6) C8—C9—C10—C11 179.7 (4)
C1—C2—C3—O2 178.8 (4) C16—O4—C11—C10 7.5 (6)
O1—C2—C3—C4 178.6 (4) C16—O4—C11—C12 −173.8 (4)
C1—C2—C3—C4 −2.4 (6) C9—C10—C11—O4 179.1 (4)
O2—C3—C4—C5 179.8 (4) C9—C10—C11—C12 0.4 (6)
C2—C3—C4—C5 1.1 (7) O4—C11—C12—O5 1.3 (5)
C3—C4—C5—C6 0.7 (7) C10—C11—C12—O5 −179.9 (3)
C3—C4—C5—Br1 −179.1 (3) O4—C11—C12—C13 179.8 (3)
C4—C5—C6—C1 −1.1 (6) C10—C11—C12—C13 −1.4 (6)
Br1—C5—C6—C1 178.7 (3) O5—C12—C13—C14 179.7 (4)
C2—C1—C6—C5 −0.2 (6) C11—C12—C13—C14 1.2 (6)
C7—C1—C6—C5 179.3 (4) C12—C13—C14—C9 −0.2 (6)
N2—N1—C7—C1 179.6 (3) C10—C9—C14—C13 −0.8 (6)
C2—C1—C7—N1 1.6 (6) C8—C9—C14—C13 −179.9 (4)
C6—C1—C7—N1 −178.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7B···O1 0.85 (5) 2.34 (5) 2.875 (4) 122 (4)
O7—H7B···O2 0.85 (5) 2.22 (5) 3.027 (5) 159 (5)
O7—H7A···O6A 0.85 (5) 2.06 (2) 2.884 (10) 163 (6)
O6A—H6B···O7i 0.85 (1) 1.91 (4) 2.740 (8) 163 (5)
O6A—H6A···O3 0.85 (1) 1.92 (2) 2.715 (6) 154 (4)
N2—H2···O5ii 0.90 2.14 3.028 (4) 169
O5—H5···O6Biii 0.82 1.85 2.64 (3) 163
O5—H5···O6Aiii 0.82 1.81 2.618 (5) 166
O1—H1···N1 0.82 1.83 2.550 (4) 145

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+2, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2888).

References

  1. Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693. [DOI] [PMC free article] [PubMed]
  5. Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694. [DOI] [PMC free article] [PubMed]
  6. Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695. [DOI] [PMC free article] [PubMed]
  7. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  8. Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.
  9. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033522/ci2888sup1.cif

e-65-o2259-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033522/ci2888Isup2.hkl

e-65-o2259-Isup2.hkl (191KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES