Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 15;65(Pt 9):o2147. doi: 10.1107/S1600536809031419

5-(2-Fur­yl)-3-methyl-1-(3-nitro­phen­yl)-4,5-dihydro-1H-pyrazole

Jun-qiang Chen a,*, He-ping Li b, Chang-shan Huang a, Jin-ying Wu a
PMCID: PMC2970096  PMID: 21577556

Abstract

In the title compound, C14H13N3O3, the pyrazoline ring assumes an envelope conformation with the furanyl-bearing C atom at the flap position. The dihedral angle between the furan and nitrobenzene rings is 84.40 (9)°. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of pyrazoline derivatives, see: Hatheway et al. (1978); Mahajan et al. (1991); Sobczak & Pawlaczyk (1998).graphic file with name e-65-o2147-scheme1.jpg

Experimental

Crystal data

  • C14H13N3O3

  • M r = 271.27

  • Triclinic, Inline graphic

  • a = 6.2089 (2) Å

  • b = 7.8581 (3) Å

  • c = 14.3800 (4) Å

  • α = 105.764 (2)°

  • β = 97.054 (2)°

  • γ = 96.944 (2)°

  • V = 661.31 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.31 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9707 measured reflections

  • 2590 independent reflections

  • 1778 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.121

  • S = 1.10

  • 2590 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031419/xu2580sup1.cif

e-65-o2147-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031419/xu2580Isup2.hkl

e-65-o2147-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.93 2.51 3.311 (2) 144

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The derivatives of pyrazoline are mostly used in medicine, for example as antitumor (Hatheway et al., 1978), analgesic (Sobczak & Pawlaczyk, 1998), and antimicrobial (Mahajan et al., 1991) agents. As part of our work, the new title compound (I) are synthesized in our group.

The pyrazoline ring assumes an envelope conformation with the furanyl-bearing carbon atom at the flap position (Fig. 1). Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure. (Fig. 2 and Table 1).

Experimental

3-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, furylideneacetone (1 mmol, 0.136 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, bronze single crystals of (I) were obtained after 3 d.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.98 (methine) and 0.96 Å (methyl), with Uiso(H)=1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing of (I), showing the intermolecular hydrogen bonds as dashed lines.

Crystal data

C14H13N3O3 Z = 2
Mr = 271.27 F(000) = 284
Triclinic, P1 Dx = 1.362 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.2089 (2) Å Cell parameters from 1598 reflections
b = 7.8581 (3) Å θ = 3.5–24.6°
c = 14.3800 (4) Å µ = 0.10 mm1
α = 105.764 (2)° T = 296 K
β = 97.054 (2)° Block, bronze
γ = 96.944 (2)° 0.31 × 0.15 × 0.10 mm
V = 661.31 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 1778 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 26.0°, θmin = 3.5°
ω scans h = −7→7
9707 measured reflections k = −8→9
2590 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0608P)2] where P = (Fo2 + 2Fc2)/3
2590 reflections (Δ/σ)max = 0.003
181 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.36743 (18) 0.34679 (15) 0.90208 (8) 0.0586 (3)
N1 0.1661 (2) 0.62239 (17) 0.78604 (10) 0.0496 (4)
N2 0.2000 (2) 0.45740 (16) 0.72794 (10) 0.0491 (4)
C9 0.3755 (2) 0.4521 (2) 0.67745 (11) 0.0429 (4)
C14 0.5059 (2) 0.6102 (2) 0.67820 (11) 0.0460 (4)
H14A 0.4772 0.7211 0.7132 0.055*
C7 0.0168 (3) 0.5942 (2) 0.83623 (13) 0.0534 (4)
C10 0.4224 (3) 0.2892 (2) 0.62195 (12) 0.0546 (4)
H10A 0.3347 0.1826 0.6191 0.066*
C4 0.2531 (2) 0.2318 (2) 0.81601 (12) 0.0477 (4)
C13 0.6784 (2) 0.5987 (2) 0.62600 (12) 0.0514 (4)
N3 0.8105 (2) 0.7665 (2) 0.62761 (12) 0.0680 (5)
O1 0.9707 (2) 0.7615 (2) 0.58611 (11) 0.0934 (5)
C5 0.0941 (2) 0.3072 (2) 0.75855 (12) 0.0508 (4)
H5A 0.0138 0.2126 0.7010 0.061*
C12 0.7298 (3) 0.4395 (3) 0.57272 (12) 0.0611 (5)
H12A 0.8487 0.4365 0.5391 0.073*
C6 −0.0684 (3) 0.4007 (3) 0.81836 (14) 0.0615 (5)
H6A −0.2166 0.3686 0.7817 0.074*
H6B −0.0677 0.3706 0.8795 0.074*
C1 0.4967 (3) 0.2476 (3) 0.94299 (14) 0.0607 (5)
H1B 0.5924 0.2920 1.0022 0.073*
O2 0.7571 (3) 0.9062 (2) 0.67000 (14) 0.1046 (6)
C11 0.5976 (3) 0.2848 (3) 0.57136 (13) 0.0642 (5)
H11A 0.6270 0.1748 0.5355 0.077*
C3 0.3090 (3) 0.0707 (2) 0.80439 (14) 0.0660 (5)
H3A 0.2550 −0.0308 0.7518 0.079*
C2 0.4665 (3) 0.0818 (3) 0.88708 (14) 0.0673 (5)
H2A 0.5350 −0.0108 0.8992 0.081*
C8 −0.0654 (3) 0.7433 (3) 0.90245 (15) 0.0793 (6)
H8A 0.0141 0.8556 0.9019 0.119*
H8B −0.0444 0.7329 0.9678 0.119*
H8C −0.2191 0.7381 0.8806 0.119*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.0577 (7) 0.0535 (7) 0.0622 (8) 0.0133 (5) 0.0000 (6) 0.0156 (6)
N1 0.0513 (8) 0.0481 (8) 0.0555 (8) 0.0152 (6) 0.0159 (6) 0.0190 (7)
N2 0.0507 (7) 0.0414 (7) 0.0613 (9) 0.0090 (6) 0.0178 (6) 0.0206 (7)
C9 0.0443 (8) 0.0457 (9) 0.0417 (9) 0.0103 (7) 0.0050 (7) 0.0172 (7)
C14 0.0459 (8) 0.0467 (9) 0.0464 (9) 0.0077 (7) 0.0087 (7) 0.0147 (7)
C7 0.0454 (8) 0.0673 (11) 0.0568 (10) 0.0186 (8) 0.0109 (8) 0.0284 (9)
C10 0.0639 (10) 0.0459 (10) 0.0528 (10) 0.0079 (8) 0.0105 (8) 0.0125 (8)
C4 0.0474 (8) 0.0414 (9) 0.0544 (10) 0.0009 (7) 0.0061 (7) 0.0179 (8)
C13 0.0452 (9) 0.0591 (10) 0.0501 (10) 0.0017 (8) 0.0074 (7) 0.0191 (8)
N3 0.0584 (9) 0.0749 (12) 0.0685 (10) −0.0040 (8) 0.0163 (8) 0.0210 (9)
O1 0.0729 (9) 0.1114 (12) 0.0966 (11) −0.0083 (8) 0.0418 (8) 0.0290 (9)
C5 0.0440 (8) 0.0488 (9) 0.0621 (10) −0.0003 (7) 0.0046 (7) 0.0256 (8)
C12 0.0591 (10) 0.0759 (13) 0.0516 (11) 0.0182 (9) 0.0200 (8) 0.0159 (9)
C6 0.0403 (8) 0.0813 (13) 0.0765 (12) 0.0102 (8) 0.0121 (8) 0.0440 (11)
C1 0.0531 (10) 0.0751 (13) 0.0613 (11) 0.0207 (9) 0.0076 (8) 0.0285 (10)
O2 0.0990 (12) 0.0602 (9) 0.1522 (16) −0.0069 (8) 0.0581 (11) 0.0187 (10)
C11 0.0777 (12) 0.0602 (11) 0.0550 (11) 0.0230 (10) 0.0176 (10) 0.0093 (9)
C3 0.0813 (13) 0.0457 (10) 0.0690 (13) 0.0129 (9) 0.0027 (10) 0.0164 (9)
C2 0.0761 (12) 0.0621 (13) 0.0761 (13) 0.0288 (10) 0.0118 (10) 0.0333 (11)
C8 0.0778 (13) 0.0996 (16) 0.0771 (14) 0.0422 (12) 0.0352 (11) 0.0316 (12)

Geometric parameters (Å, °)

O—C4 1.3689 (18) N3—O2 1.208 (2)
O—C1 1.372 (2) N3—O1 1.2209 (19)
N1—C7 1.277 (2) C5—C6 1.532 (2)
N1—N2 1.3940 (18) C5—H5A 0.9800
N2—C9 1.3803 (19) C12—C11 1.376 (3)
N2—C5 1.4784 (19) C12—H12A 0.9300
C9—C14 1.396 (2) C6—H6A 0.9700
C9—C10 1.397 (2) C6—H6B 0.9700
C14—C13 1.379 (2) C1—C2 1.309 (2)
C14—H14A 0.9300 C1—H1B 0.9300
C7—C8 1.482 (2) C11—H11A 0.9300
C7—C6 1.489 (3) C3—C2 1.420 (2)
C10—C11 1.380 (2) C3—H3A 0.9300
C10—H10A 0.9300 C2—H2A 0.9300
C4—C3 1.325 (2) C8—H8A 0.9600
C4—C5 1.488 (2) C8—H8B 0.9600
C13—C12 1.375 (2) C8—H8C 0.9600
C13—N3 1.459 (2)
C4—O—C1 105.97 (13) C4—C5—H5A 110.0
C7—N1—N2 108.34 (13) C6—C5—H5A 110.0
C9—N2—N1 118.80 (12) C13—C12—C11 117.03 (16)
C9—N2—C5 125.31 (13) C13—C12—H12A 121.5
N1—N2—C5 111.64 (12) C11—C12—H12A 121.5
N2—C9—C14 120.55 (14) C7—C6—C5 103.00 (13)
N2—C9—C10 120.96 (14) C7—C6—H6A 111.2
C14—C9—C10 118.47 (14) C5—C6—H6A 111.2
C13—C14—C9 118.59 (15) C7—C6—H6B 111.2
C13—C14—H14A 120.7 C5—C6—H6B 111.2
C9—C14—H14A 120.7 H6A—C6—H6B 109.1
N1—C7—C8 121.87 (16) C2—C1—O 110.60 (15)
N1—C7—C6 113.46 (15) C2—C1—H1B 124.7
C8—C7—C6 124.64 (16) O—C1—H1B 124.7
C11—C10—C9 120.67 (16) C12—C11—C10 121.50 (17)
C11—C10—H10A 119.7 C12—C11—H11A 119.3
C9—C10—H10A 119.7 C10—C11—H11A 119.3
C3—C4—O 109.50 (15) C4—C3—C2 107.27 (16)
C3—C4—C5 134.10 (17) C4—C3—H3A 126.4
O—C4—C5 116.37 (14) C2—C3—H3A 126.4
C12—C13—C14 123.72 (16) C1—C2—C3 106.65 (16)
C12—C13—N3 119.04 (15) C1—C2—H2A 126.7
C14—C13—N3 117.24 (15) C3—C2—H2A 126.7
O2—N3—O1 122.13 (17) C7—C8—H8A 109.5
O2—N3—C13 118.76 (15) C7—C8—H8B 109.5
O1—N3—C13 119.11 (17) H8A—C8—H8B 109.5
N2—C5—C4 112.93 (12) C7—C8—H8C 109.5
N2—C5—C6 100.18 (13) H8A—C8—H8C 109.5
C4—C5—C6 113.50 (14) H8B—C8—H8C 109.5
N2—C5—H5A 110.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O1i 0.93 2.51 3.311 (2) 144

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2580).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem.21, 563–567. [DOI] [PubMed]
  5. Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc.68, 245–246.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sobczak, H. & Pawlaczyk, J. (1998). Acta Pol. Pharm.55, 279–283. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031419/xu2580sup1.cif

e-65-o2147-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031419/xu2580Isup2.hkl

e-65-o2147-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES